Here is a list of QLDPC codes.
Code | Description |
---|---|
2D color code | Two-dimensional version of the color code, defined on a two-dimensional trivalent planar graph with 3-colorable faces. Each face hosts two stabilizer generators, a Pauli-\(X\) and a Pauli-\(Z\) string acting on all the qubits of the face. |
2D hyperbolic surface code | Hyperbolic surface codes based on a tessellation of a closed 2D manifold with a hyperbolic geometry (i.e., non-Euclidean geometry, e.g., saddle surfaces when defined on a 2D plane). |
2D lattice stabilizer code | Lattice stabilizer code in two spatial dimensions. |
3D color code | Three-dimensional version of the color code. Logical dimension is determined by the genus of the underlying surface (for closed surfaces), types of boundaries (for open surfaces), and/or any twist defects [1] present. |
3D fermionic surface code | A non-CSS 3D Kitaev surface code that realizes \(\mathbb{Z}_2\) gauge theory with an emergent fermion. The model can be defined on a cubic lattice in several ways [2; Eq. (D45-46)]. Realizations on other lattices also exist [3,4]. |
3D lattice stabilizer code | Lattice stabilizer code in three spatial dimensions. Qubit codes are conjectured to admit either fracton phases or abelian topological phases that are equivalent to multiple copies of the 3D surface code and/or the 3D fermionic surface code [2]. |
3D surface code | A variant of the Kitaev surface code on a 3D lattice. The closely related solid code [5] consists of several 3D surface codes stitched together in a way that the distance scales faster than the linear size of the system. |
Abelian TQD stabilizer code | Modular-qudit stabilizer code whose codewords realize 2D modular gapped Abelian topological order. The corresponding anyon theory is defined by an Abelian group and a Type-III group cocycle that can be decomposed as a product of Type-I and Type-II group cocycles; see [6; Sec. IV.A]. |
Abelian quantum-double stabilizer code | Modular-qudit stabilizer code whose codewords realize 2D modular gapped Abelian topological order with trivial cocycle. The corresponding anyon theory is defined by an Abelian group. All such codes can be realized by a stack of modular-qudit surface codes because all Abelian groups are Kronecker products of cyclic groups. |
Balanced product (BP) code | Family of CSS quantum codes based on products of two classical codes which share common symmetries. The balanced product can be understood as taking the usual tensor/hypergraph product and then factoring out the symmetries factored. This reduces the overall number of physical qubits \(n\), while, under certain circumstances, leaving the number of encoded qubits \(k\) and the code distance \(d\) invariant. This leads to a more favourable encoding rate \(k/n\) and normalized distance \(d/n\) compared to the tensor/hypergraph product. |
Ball color code | A color code defined on a \(D\)-dimensional colex. This family includes hypercube color codes (color codes defined on balls constructed from hyperoctahedra) and 3D ball color codes (color codes defined on duals of certain Archimedean solids). |
Bivariate bicycle (BB) code | One of several Abelian 2BGA codes which admit time-optimal syndrome measurement circuits that can be implemented in a two-layer architecture, a generalization of the square-lattice architecture optimal for the surface codes. |
Bring's code | A \([[30,8,3]]\) hyperbolic surface code on a quotient of the \(\{5,5\}\) hyperbolic tiling called Bring's curve. Its qubits and stabilizer generators lie on the vertices of the small stellated dodecahedron. Admits a set of weight-five stabilizer generators. |
Chamon model code | A foliated type-I fracton non-CSS code defined on a cubic lattice using one weight-eight stabilizer generator acting on the eight vertices of each cube in the lattice [2; Eq. (D38)]. |
Checkerboard model code | A foliated type-I fracton code defined on a cubic lattice that admits weight-eight \(X\)- and \(Z\)-type stabilizer generators on the eight vertices of each cube in the lattice. |
Classical-product code | A CSS code constructed by separately constructing the \(X\) and \(Z\) check matrices using product constructions from classical codes. A particular \([[512,174,8]]\) code performed well [7] against erasure and depolarizing noise when compared to other notable CSS codes, such as the asymptotically good quantum Tanner codes. |
Clifford-deformed surface code (CDSC) | A generally non-CSS derivative of the surface code defined by applying a constant-depth Clifford circuit to the original (CSS) surface code. Unlike the surface code, CDSCs include codes whose thresholds and subthreshold performance are enhanced under noise biased towards dephasing. Examples of CDSCs include the XY code, XZZX code, and random CDSCs. |
Color code | Member of a family of codes defined on a \(D\)-dimensional graph which satisfies two properties: The graph is (1) a homogeneous simplicial \(D\)-complex obtained as a triangulation of the interior of a \(D\)-simplex and (2) is \(D+1\)-colorable. |
Crystalline-circuit qubit code | Code dynamically generated by unitary Clifford circuits defined on a lattice with some crystalline symmetry. A notable example is the circuit defined on a rotated square lattice with vertices corresponding to iSWAP gates and edges decorated by \(R_X[\pi/2]\), a single-qubit rotation by \(\pi/2\) around the \(X\)-axis. This circuit is invariant under space-time translations by a unit cell \((T, a)\) and all transformations of the square lattice point group \(D_4\). |
Dinur-Hsieh-Lin-Vidick (DHLV) code | A family of asymptotically good QLDPC codes which are related to expander LP codes in that the roles of the check operators and physical qubits are exchanged. |
Dinur-Lin-Vidick (DLV) code | Member of a family of quantum locally testable codes constructed using cubical chain complexes, which are \(t\)-order extensions of the complexes underlying expander codes (\(t=1\)) and expander lifted-product codes (\(t=2\)). For \(t=4\), assuming a conjecture about random linear maps, there exists a family with linear dimension and inverse poly-logarithmic relative distance and soundness. |
Distance-balanced code | Galois-qudit CSS code constructed from a CSS code and a classical code using a distance-balancing procedure based on a generalized homological product. The initial code is said to be unbalanced, i.e., tailored to noise biased toward either bit- or phase-flip errors, and the procedure can result in a code that is treats both types of errors on a more equal footing. The original distance-balancing procedure [8], later generalized [9; Thm. 4.2], can yield QLDPC codes [8; Thm. 1]. |
Double-semion stabilizer code | Modular-qudit stabilizer code with qudit dimension \(q=4\) that is characterized by the 2D double semion topological phase. The code can be obtained from the \(\mathbb{Z}_4\) surface code by condensing the anyon \(e^2 m^2\) [10]. Originally formulated as the ground-state space of a Hamiltonian with non-commuting terms [11], which can be extended to other spatial dimensions [12], and later as a commuting-projector code [13]. |
Expander LP code | Family of \(G\)-lifted product codes constructed using two random classical Tanner codes defined on expander graphs [14]. For certain parameters, this construction yields the first asymptotically good QLDPC codes. Classical codes resulting from this construction are one of the first two families of \(c^3\)-LTCs. |
Fiber-bundle code | Also called a twisted product code. CSS code constructed by combining one code as the base and another as the fiber of a fiber bundle. In particular, taking a random LDPC code as the base and a cyclic repetition code as the fiber yields, after distance balancing, a QLDPC code with distance \(\Omega(n^{3/5}\text{polylog}(n))\) and rate \(\Omega(n^{-2/5}\text{polylog}(n))\) is obtained. |
Fibonacci fractal spin-liquid code | A fractal type-I fracton CSS code defined on a cubic lattice [2; Eq. (D23)]. |
Five-qubit perfect code | Five-qubit cyclic stabilizer code that is the smallest qubit stabilizer code to correct a single-qubit error. |
Four-rotor code | \([[4,2,2]]_{\mathbb Z}\) CSS rotor code that is an extension of the four-qubit code to the integer alphabet, i.e., the angular momentum states of a planar rotor. The code is \(U(1)\)-covariant and its ideal logical-rotor codewords, \begin{align} |\overline{x,y}\rangle = \sum_{j,k,l\in\mathbb{Z}} \delta_{a,j+k}\delta_{b,l} \left| j,k,j+l,k+l \right\rangle~, \tag*{(1)}\end{align} where \(a,b\in\mathbb{Z}\), are not normalizable. |
Fractal surface code | Kitaev surface code on a fractal geometry, which is obtained by removing qubits from the surface code on a cubic lattice. Stub. |
Fracton stabilizer code | A 3D translationally invariant stabilizer code whose codewords make up the ground-state space of a Hamiltonian in a fracton phase. Unlike topological phases, whose excitations can move in any direction, fracton phases are characterized by excitations whose movement is restricted. |
Freedman-Meyer-Luo code | Hyperbolic surface code constructed using cellulation of a Riemannian Manifold \(M\) exhibiting systolic freedom [15]. Codes derived from such manifolds can achieve distances scaling better than \(\sqrt{n}\), something that is impossible using closed 2D surfaces or 2D surfaces with boundaries [16]. Improved codes are obtained by studying a weak family of Riemann metrics on closed 4-dimensional manifolds \(S^2\otimes S^2\) with the \(Z_2\)-homology. |
Galois-qudit topological code | Abelian topological code, such as a 2D surface [17,18] or 2D color [19] code, constructed on lattices of Galois qudits. |
Generalized bicycle (GB) code | A quasi-cyclic Galois-qudit CSS code constructed using a generalized version of the bicycle ansatz [20] from a pair of equivalent index-two quasi-cyclic linear codes. Various instances of qubit GB codes are constructed in Ref. [21] (for \(k=2\)) and in Ref. [22]. |
Generalized homological-product CSS code | CSS code whose properties are determined from an underlying chain complex, which often consists of some type of product of other chain complexes. |
Generalized homological-product code | Stabilizer code whose properties are determined from an underlying chain complex, which often consists of some type of product of other chain complexes. The Qubit CSS-to-homology correspondence yields an interpretation of codes in terms of manifolds, thus allowing for the use of various products from topology in constructing codes. |
Generalized homological-product qubit CSS code | Qubit CSS code whose properties are determined from an underlying chain complex, which often consists of some type of product of other chain complexes. |
Golden code | Variant of the Guth-Lubotzky hyperbolic surface code that uses regular tessellations for 4-dimensional hyperbolic space. |
Good QLDPC code | Also called asymptotically good QLDPC codes. A family of QLDPC codes \([[n_i,k_i,d_i]]\) whose asymptotic rate \(\lim_{i\to\infty} k_i/n_i\) and asymptotic distance \(\lim_{i\to\infty} d_i/n_i\) are both positive. |
Guth-Lubotzky code | Hyperbolic surface code based on cellulations of certain four-dimensional manifolds. The manifolds are shown to have good homology and systolic properties for the purposes of code construction, with corresponding codes exhibiting linear rate. |
Haah cubic code | Class of stabilizer codes on a length-\(L\) cubic lattice with one or two qubits per site. We also require that the stabilizer group \(\mathsf{S}\) is translation invariant and generated by two types of operators with support on a cube. |
Hemicubic code | Stub. |
Hierarchical code | Member of a family of \([[n,k,d]]\) qubit stabilizer codes resulting from a concatenation of a constant-rate QLDPC code with a rotated surface code. Concatenation allows for syndrome extraction to be performed on a 2D geometry while maintining a threshold at the expense of a logarithmically vanishing rate. The growing syndrome extraction circuit depth allows known bounds in the literature to be weakened [23,24]. |
High-dimensional expander (HDX) code | CSS code constructed from a Ramanujan quantum code and an asymptotically good classical LDPC code using distance balancing. Ramanujan quantum codes are defined using Ramanujan complexes which are simplicial complexes that generalise Ramanujan graphs [25,26]. Combining the quantum code obtained from a Ramanujan complex and a good classical LDPC code, which can be thought of as coming from a 1-dimensional chain complex, yields a new quantum code that is defined on a 2-dimensional chain complex. This 2-dimensional chain complex is obtained by the co-complex of the product of the 2 co-complexes. The length, dimension and distance of the new quantum code depend on the input codes. |
Homological code | CSS-type extenstion of the Kitaev surface code to arbitrary manifolds. The version on a Euclidean manifold of some fixed dimension is called the \(D\)-dimensional surface or \(D\)-dimensional toric code. |
Homological product code | CSS code formulated using the homological product of two chain complexes (see Qubit CSS-to-homology correspondence). Given two classical codes, \(C_i=[n_i,k_i,d_i]\) with \(i\in\{1,2\}\), whose parity-check matrices \(H_i\) satisfy \(H_i^2 = 0\), their homological product yields two classical codes with \(C_{X,Z}\) with parity-check matrices \begin{align} H_X = H_Z^T = H_1 \otimes I + I \otimes H_2~, \tag*{(2)}\end{align} where \(I\) is the identity. These two codes then yield a homological product code via the CSS construction. |
Homological rotor code | A homological quantum rotor code is an extension of analog stabilizer codes to rotors. The code is stabilized by a continuous group of rotor \(X\)-type and \(Z\)-type generalized Pauli operators. Codes are formulated using an extension of the qubit CSS-to-homology correspondence to rotors. The homology group of the logical operators has a torsion component because the chain complexes are defined over the ring of integers, which yields codes with finite logical dimension, i.e., encoding logical qudits instead of only logical rotors. Such finite-dimensional encodings are not possible with analog stabilizer codes. |
Hsieh-Halasz (HH) code | Member of one of two families of fracton codes, named HH-I and HH-II, defined on a cubic lattice with two qubits per site. HH-I (HH-II) is a CSS (non-CSS) stabilizer code family, with the former identified as a foliated type-I fracton code [2]. |
Hsieh-Halasz-Balents (HHB) code | Member of one of two families of fracton codes, named HHB model A and B, defined on a cubic lattice with two qubits per site. Both are expected to be foliated type-I fracton codes [2; Eqs. (D42-D43)]. |
Hyperbolic surface code | An extension of the Kitaev surface code construction to hyperbolic manifolds. Given a cellulation of a manifold, qubits are put on \(i\)-dimensional faces, \(X\)-type stabilizers are associated with \((i-1)\)-faces, while \(Z\)-type stabilizers are associated with \(i+1\)-faces. |
Hypergraph product (HGP) code | A member of a family of CSS codes whose stabilizer generator matrix is obtained from a hypergraph product of two classical linear codes. Codes from hypergraph products in higher dimension are called higher-dimensional HGP codes [27]. |
Hypersphere product code | Stub. |
Kitaev current-mirror qubit code | Member of the family of \([[2n,(0,2),(2,n)]]_{\mathbb{Z}}\) homological rotor codes storing a logical qubit on a thin Möbius strip. The ideal code can be obtained from a Josephson-junction [28] system [29]. |
Kitaev surface code | A family of Abelian topological CSS stabilizer codes whose generators are few-body \(X\)-type and \(Z\)-type Pauli strings associated to the stars and plaquettes, respectively, of a cellulation of a two-dimensional surface (with a qubit located at each edge of the cellulation). Codewords correspond to ground states of the surface code Hamiltonian, and error operators create or annihilate pairs of anyonic charges or vortices. |
Lattice stabilizer code | A geometrically local modular-qudit or Galois-qudit stabilizer code with qudits organized on a lattice modeled by the additive group \(\mathbb{Z}^D\) for spatial dimension \(D\). On an infinite lattice, its stabilizer group is generated by few-site Pauli operators and their translations, in which case the code is called translationally invariant stabilizer code. Boundary conditions have to be imposed on the lattice in order to obtain finite-dimensional versions. Lattice defects and boundaries between different codes can also be introduced. |
Layer code | Member of a family of 3D lattice CSS codes with stabilizer generator weights \(\leq 6\) that are obtained by coupling layers of 2D surface code according to the Tanner graph of a QLDPC code. Geometric locality is maintained because, instead of being concatenated, each pair of parallel surface-code squares are fused (or quasi-concatenated) with perpendicular surface-code squares via lattice surgery. |
Lift-connected surface (LCS) code | Member of one of several families of lifted-product codes that consist of sparsely interconnected stacks of surface codes. |
Lifted-product (LP) code | Code that utilizes the notion of a lifted product in its construction. Lifted products of certain classical Tanner codes are the first (asymptotically) good QLDPC codes. |
Long-range enhanced surface code (LRESC) | Code constructed using the hypergraph product of two copies of a concatenated LDPC-repetition code. This family interpolates between surface codes and hypergraph codes since the hypergraph product of two repetition codes yields the planar surface code. |
Lossless expander balanced-product code | QLDPC code constructed by taking the balanced product of lossless expander graphs. Using one part of a quantum-code chain complex constructed with one-sided loss expanders [30] yields a \(c^3\)-LTC [31]. Using two-sided expanders, which are only conjectured to exist, yields an asymptotically good QLDPC code family [32]. |
Matching code | Member of a class of qubit stabilizer codes based on the Abelian phase of the Kitaev honeycomb model. |
Modular-qudit color code | An extension of color codes on lattices to modular qudits. Codes are defined analogous to qubit color codes on suitable lattices of any spatial dimension, but a directionality is required in order to make the modular-qudit stabilizer commute. This can be done by puncturing a hyperspherical lattice [33] or constructing a star-bipartition; see [34; Sec. III]. Logical dimension is determined by the genus of the underlying surface (for closed surfaces), types of boundaries (for open surfaces), and/or any twist defects present. |
Modular-qudit surface code | Extension of the surface code to prime-dimensional [17,35] and more general modular qudits [36]. Stabilizer generators are few-body \(X\)-type and \(Z\)-type Pauli strings associated to the stars and plaquettes, respectively, of a tessellation of a two-dimensional surface. Since qudits have more than one \(X\) and \(Z\)-type operator, various sets of stabilizer generators can be defined. Ground-state degeneracy and the associated phase depends on the qudit dimension and the stabilizer generators. |
Projective-plane surface code | A family of Kitaev surface codes on the non-orientable 2-dimensional compact manifold \(\mathbb{R}P^2\) (in contrast to a genus-\(g\) surface). Whereas genus-\(g\) surface codes require \(2g\) logical qubits, qubit codes on \(\mathbb{R}P^2\) are made from a single logical qubit. |
Quantum Reed-Muller code | A CSS code formed from a classical Reed-Muller (RM) code or its punctured/shortened versions. Such codes often admit transversal logical gates in the Clifford hierarchy. |
Quantum Tanner code | Member of a family of QLDPC codes based on two compatible classical Tanner codes defined on a two-dimensional Cayley complex. For certain choices of codes and complex, the resulting codes have asymptotically good parameters. |
Quantum check-product code | Stub. |
Quantum convolutional code | One-dimensional translationally invariant qubit stabilizer code whose whose stabilizer group can be partitioned into constant-size subsets of constant support and of constant overlap between neighboring sets. Initially formulated as a quantum analogue of convolutional codes, which were designed to protect a continuous and never-ending stream of information. Precise formulations sometimes begin with a finite-dimensional lattice, with the intent to take the thermodynamic limit; logical dimension can be infinite as well. |
Quantum expander code | CSS codes constructed from a hypergraph product of bipartite expander graphs [14] with bounded left and right vertex degrees. For every bipartite graph there is an associated matrix (the parity check matrix) with columns indexed by the left vertices, rows indexed by the right vertices, and 1 entries whenever a left and right vertex are connected. This matrix can serve as the parity check matrix of a classical code. Two bipartite expander graphs can be used to construct a quantum CSS code (the quantum expander code) by using the parity check matrix of one as \(X\) checks, and the parity check matrix of the other as \(Z\) checks. |
Quantum low-density parity-check (QLDPC) code | Member of a family of \([[n,k,d]]\) modular-qudit or Galois-qudit stabilizer codes for which the number of sites participating in each stabilizer generator and the number of stabilizer generators that each site participates in are both bounded by a constant \(w\) as \(n\to\infty\); can be denoted by \([[n,k,d,w]]\). QLDPC codes can correct many stochastic errors far beyond the distance, which may not scale as favorably. Together with more accurate, faster, and easier-to-parallelize measurements than those of general stabilizer codes, this property makes QLDPC codes interesting in practice. |
Quantum multi-dimensional parity-check (QMDPC) code | High-rate low-distance CSS code whose qubits lie on a \(D\)-dimensional rectangle, with \(X\)-type stabilizer generators defined on each \(D-1\)-dimensional rectangle. The \(Z\)-type stabilizer generators are defined via permutations in order to commute with the \(X\)-type generators. |
Quantum pin code | Member of a family of CSS codes that encompasses both quantum Reed-Muller and color codes and that is defined using intersections of pinned sets. |
Quantum spatially coupled (SC-QLDPC) code | QLDPC code whose stabilizer generator matrix resembles the parity-check matrix of SC-LDPC codes. There exist CSS [37] and stabilizer constructions [38]. In either case, the stabilizer generator matrix is constructed by "spatially" coupling sub-matrix blocks in chain-like fashion (or, more generally, in grid-like fashion) to yield a band matrix. The sub-matrix blocks have to satisfy certain conditions amongst themselves so that the resulting band matrix is a stabilizer generator matrix. Matrices corresponding to translationally invariant chains are called time-variant, and otherwise are called time-invariant. |
Qudit cubic code | Generalization of the Haah cubic code to modular qudits. |
Raussendorf-Bravyi-Harrington (RBH) cluster-state code | Also called an RHG (Raussendorf-Harrington-Goyal) cluster-state code. A three-dimensional cluster-state code defined on the bcc lattice (equivalently, a cubic lattice with qubits on edges and faces). |
Rhombic dodecahedron surface code | A \([[14,3,3]]\) non-CSS surface code whose qubits lie on the vertices of a rhombic dodecahedron. Its non-CSS nature is due to twist defects [39] stemming from the geometry of the polytope. |
Rotated surface code | Variant of the surface code defined on a square lattice that has been rotated 45 degrees such that qubits are on vertices, and both \(X\)- and \(Z\)-type check operators occupy plaquettes in an alternating checkerboard pattern. |
Sierpinsky fractal spin-liquid (SFSL) code | A fractal type-I fracton CSS code defined on a cubic lattice [2; Eq. (D22)]. The code admits an excitation-moving operator shaped like a Sierpinski triangle [2; Fig. 2]. |
Stellated color code | A color code on a lattice patch with a single twist defect at the center of the patch. |
Surface-17 code | A \([[9,1,3]]\) rotated surface code named for the sum of its 9 data qubits and 8 syndrome qubits. It uses the smallest number of qubits to perform error correction on a surface code with parallel syndrome extraction. |
Tensor-product HDX code | Code constructed in a similar way as the HDX code, but utilizing tensor products of Ramanujan complexes in order to improve code distance from \(\sqrt{n}\log n\) to \(\sqrt{n}~\text{polylog}(n)\). The utility of such tensor products comes from the fact that one of the Ramanujan complexes is a collective cosystolic expander as opposed to just a cosystolic expander. |
Three-fermion (3F) Walker-Wang model code | A 3D lattice stabilizer code whose low-energy excitations on boundaries realize the three-fermion anyon theory [40–42] and that can be used as a resource state for fault-tolerant MBQC [43]. |
Three-rotor code | \([[3,1,2]]_{\mathbb Z}\) rotor code that is an extension of the \([[3,1,2]]_3\) qutrit CSS code to the integer alphabet, i.e., the angular momentum states of a planar rotor. The code is \(U(1)\)-covariant and its ideal codewords, \begin{align} |\overline{x}\rangle = \sum_{y\in\mathbb{Z}} \left| -3y,y-x,2(y+x) \right\rangle~, \tag*{(3)}\end{align} where \(x\in\mathbb{Z}\), are not normalizable. |
Transverse-field Ising model (TFIM) code | A 1D translationally invariant stabilizer code whose encoding is a constant-depth circuit of nearest-neighbor gates on alternating even and odd bonds that consist of transverse-field Ising Hamiltonian interactions. The code allows for perfect state transfer of arbitrary distance using local operations and classical communications (LOCC). |
Triangular color code | A planar color code defined on a trivalent lattice, typically the 6-6-6 (honeycomb) or the 4-8-8 (square octagon) lattice. Each boundary of the triangle intersects the lattice such that it only touches faces of two colors. The color of the boundary is then the other third color. |
Triangular surface code | A surface code with weight-four stabilizer generators defined on a triangular lattice patch that are examples of twist-defect surface code with a single twist defect at the center of the patch. The codes use about \(25\%\) fewer physical per logical qubit for a given distance compared to the surface code. |
Twist-defect surface code | A non-CSS extension of the 2D surface-code construction whose non-CSS stabilizer generators are associated with twist defects of the associated lattice. |
Two-block group-algebra (2BGA) codes | 2BGA codes are the smallest LP codes LP\((a,b)\), constructed from a pair of group algebra elements \(a,b\in \mathbb{F}_q[G]\), where \(G\) is a finite group, and \(\mathbb{F}_q\) is a Galois field. For a group of order \(\ell\), we get a 2BGA code of length \(n=2\ell\). A 2BGA code for an Abelian group is called an Abelian 2BGA code. |
Type-II fractal spin-liquid code | A type-II fracton prime-qudit CSS code defined on a cubic lattice [2; Eqs. (D9-D10)]. |
X-cube model code | A foliated type-I fracton code supporting a subextensive number of logical qubits. Variants include the membrane-coupled [44], twice-foliated [45], and several generalized [46] X-cube models. |
XY surface code | Also called the tailored surface code (TSC). Non-CSS derivative of the surface code whose generators are \(XXXX\) and \(YYYY\), obtained by mapping \(Z \to Y\) in the surface code. |
XYZ product code | A non-CSS QLDPC code constructed from three classical codes. The construction of an XYZ product code is similar to that of a hypergraph product code and related codes. The idea is that rather than taking a product of only two classical codes to produce a CSS code, a third classical code is considered, acting with Pauli-\(Y\) operators. |
XYZ\(^2\) hexagonal stabilizer code | An instance of the matching code based on the Kitaev honeycomb model. It is described on a hexagonal lattice with \(XYZXYZ\) stabilizers on each hexagonal plaquette. Each vertical pair of qubits has an \(XX\), \(YY\), or \(ZZ\) link stabilizer depending on the orientation of the plaquette stabilizers. |
XZZX surface code | Non-CSS variant of the rotated surface code whose generators are \(XZXZ\) Pauli strings associated, clock-wise, to the vertices of each face of a two-dimensional lattice (with a qubit located at each vertex of the tessellation). |
Yoked surface code | Member of a family of \([[n,k,d]]\) qubit CSS codes resulting from a concatenation of a QMDPC code with a rotated surface code. Concatenation can as much as triple the number of logical qubits per physical qubit of the original surface code and does not impose additional connectivity constraints. |
Zero-pi qubit code | A \([[2,(0,2),(2,1)]]_{\mathbb{Z}}\) homological rotor code on the smallest tiling of the projective plane \(\mathbb{R}P^2\). The ideal code can be obtained from a four-rotor Josephson-junction [28] system after a choice of grounding [29]. |
\((5,1,2)\)-convolutional code | Quantum convolutional code with the stabilizer generators \begin{align} \begin{array}{cccccccc} X & Z & I & I & I & I & I & \cdots\\ Z & X & X & Z & I & I & I & \cdots\\ I & Z & X & X & Z & I & I & \cdots\\ I & I & Z & X & X & Z & I & \cdots\\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots \end{array} \tag*{(4)}\end{align} |
\([[144,12,12]]\) gross code | A BB QLDPC code which requires less physical and ancilla qubits (for syndrome extraction) than the surface code with the same number of logical qubits and distance. The name stems from the fact that a gross is a dozen dozen. |
\([[15, 7, 3]]\) quantum Hamming code | Self-dual quantum Hamming code that admits permutation-based CZ logical gates. |
\([[15,1,3]]\) quantum Reed-Muller code | \([[15,1,3]]\) CSS code that is most easily thought of as a tetrahedral 3D color code. This code contains 15 qubits, represented by four vertices, four face centers, six edge centers, and one body center. The tetrahedron is cellulated into four identical polyhedron cells by connecting the body center to all four face centers, where each face center is then connected by three adjacent edge centers. Each colored cell corresponds to a weight-8 \(X\)-check, and each face corresponds to a weight-4 \(Z\)-check. A logical \(Z\) is any weight-3 \(Z\)-string along an edge of the entire tetrahedron. The logical \(X\) is any weight-7 \(X\)-face of the entire tetrahedron. |
\([[2^D,D,2]]\) hypercube code | Member of a family of codes defined by placing qubits on a \(D\)-dimensional hypercube, \(Z\)-stabilizers on all two-dimensional faces, and an \(X\)-stabilizer on all vertices. These codes realize gates at the \((D-1)\)-st level of the Clifford hierarchy. |
\([[2^r-1, 1, 3]]\) simplex code | Member of color-code code family constructed with a first-order punctured RM\((1,m=r)\) \([2^r-1,r+1,2^{r-1}-1]\) code and its even subcode for \(r \geq 3\). Each code transversally implements a diagonal gate at the \((r-1)\)st level of the Clifford hierarchy [47,48]. Each code is a color code defined on a simplex in \(r-1\) dimensions [33,49], where qubits are placed on the vertices, edges, and faces as well as on the simplex itself. |
\([[2^r-1, 2^r-2r-1, 3]]\) quantum Hamming code | CCS code constructed with a classical Hamming code \([2^r-1,2^r-1-r,3]=C_X=C_Z\) a.k.a. a first-order punctured Reed-Muller code RM\((r-2,r)\). |
\([[2^{2r-1}-1,1,2^r-1]]\) quantum punctured Reed-Muller code | Member of CSS code family constructed with a punctured self-dual RM \([2^r-1,2^{r-1},\sqrt{2}^{r-1}-1]\) code and its even subcode for \(r \geq 2\). |
\([[2m,2m-2,2]]\) error-detecting code | CSS stabilizer code for \(m\geq 2\) with generators \(\{XX\cdots X, ZZ\cdots Z\} \) acting on all \(2m\) physical qubits. The code is constructed via the CSS construction from an SPC code and a repetition code [50; Sec. III]. This is the highest-rate distance-two code when an even number of qubits is used [51]. |
\([[4,2,2]]\) CSS code | Four-qubit CSS stabilizer code is the smallest qubit stabilizer code to detect a single-qubit error. |
\([[6,4,2]]\) error-detecting code | Error-detecting six-qubit code with rate \(1/3\) whose codewords are cat/GHz states. A set of stabilizer generators is \(XXXXXX\) and \(ZZZZZZ\). It is the unique code for its parameters, up to local equivalence [52; Tab. III]. Concatenations of this code with itself yield the \([[6^r,4^r,2^r]]\) level-\(r\) many-hypercube code [53]. |
\([[7,1,3]]\) Steane code | A \([[7,1,3]]\) CSS code that is the smallest qubit CSS code to correct a single-qubit error. The code is constructed using the classical binary \([7,4,3]\) Hamming code for protecting against both \(X\) and \(Z\) errors. |
\([[7,1,3]]\) twist-defect surface code | A \([[7,1,3]]\) code different from the Steane code that is a small example of a twist-defect surface code. |
\([[8,2,2]]\) hyperbolic color code | An \([[8,2,2]]\) color code defined on the projective plane. |
\([[8,3,2]]\) CSS code | Smallest 3D color code whose physical qubits lie on vertices of a cube and which admits a (weakly) transversal CCZ gate. |
\([[9,1,3]]\) Shor code | Nine-qubit CSS code that is the first quantum error-correcting code. |
\([[9,1,3]]_{\mathbb{Z}_q}\) modular-qudit code | Modular-qudit CSS code that generalizes the \([[9,1,3]]\) Shor code using properties of the multiplicative group \(\mathbb{Z}_q\). |
References
- [1]
- M. S. Kesselring et al., “The boundaries and twist defects of the color code and their applications to topological quantum computation”, Quantum 2, 101 (2018) arXiv:1806.02820 DOI
- [2]
- A. Dua et al., “Sorting topological stabilizer models in three dimensions”, Physical Review B 100, (2019) arXiv:1908.08049 DOI
- [3]
- S. Mandal and N. Surendran, “Exactly solvable Kitaev model in three dimensions”, Physical Review B 79, (2009) arXiv:0801.0229 DOI
- [4]
- S. Ryu, “Three-dimensional topological phase on the diamond lattice”, Physical Review B 79, (2009) arXiv:0811.2036 DOI
- [5]
- K. P. Michnicki, “3D Topological Quantum Memory with a Power-Law Energy Barrier”, Physical Review Letters 113, (2014) arXiv:1406.4227 DOI
- [6]
- T. D. Ellison et al., “Pauli Stabilizer Models of Twisted Quantum Doubles”, PRX Quantum 3, (2022) arXiv:2112.11394 DOI
- [7]
- D. Ostrev et al., “Classical product code constructions for quantum Calderbank-Shor-Steane codes”, (2022) arXiv:2209.13474
- [8]
- M. B. Hastings, “Weight Reduction for Quantum Codes”, (2016) arXiv:1611.03790
- [9]
- S. Evra, T. Kaufman, and G. Zémor, “Decodable quantum LDPC codes beyond the \(\sqrt{n}\) distance barrier using high dimensional expanders”, (2020) arXiv:2004.07935
- [10]
- T. D. Ellison et al., “Pauli topological subsystem codes from Abelian anyon theories”, Quantum 7, 1137 (2023) arXiv:2211.03798 DOI
- [11]
- M. A. Levin and X.-G. Wen, “String-net condensation: A physical mechanism for topological phases”, Physical Review B 71, (2005) arXiv:cond-mat/0404617 DOI
- [12]
- M. H. Freedman and M. B. Hastings, “Double Semions in Arbitrary Dimension”, Communications in Mathematical Physics 347, 389 (2016) arXiv:1507.05676 DOI
- [13]
- J. C. Magdalena de la Fuente, N. Tarantino, and J. Eisert, “Non-Pauli topological stabilizer codes from twisted quantum doubles”, Quantum 5, 398 (2021) arXiv:2001.11516 DOI
- [14]
- S. Hoory, N. Linial, and A. Wigderson, “Expander graphs and their applications”, Bulletin of the American Mathematical Society 43, 439 (2006) DOI
- [15]
- M. H. Freedman, “Z\({}_{\text{2}}\)–Systolic-Freedom”, Proceedings of the Kirbyfest (1999) DOI
- [16]
- E. Fetaya, “Bounding the distance of quantum surface codes”, Journal of Mathematical Physics 53, (2012) DOI
- [17]
- S. S. Bullock and G. K. Brennen, “Qudit surface codes and gauge theory with finite cyclic groups”, Journal of Physics A: Mathematical and Theoretical 40, 3481 (2007) arXiv:quant-ph/0609070 DOI
- [18]
- I. Andriyanova, D. Maurice, and J.-P. Tillich, “New constructions of CSS codes obtained by moving to higher alphabets”, (2012) arXiv:1202.3338
- [19]
- P. Sarvepalli, “Topological color codes over higher alphabet”, 2010 IEEE Information Theory Workshop (2010) DOI
- [20]
- D. J. C. MacKay, G. Mitchison, and P. L. McFadden, “Sparse-Graph Codes for Quantum Error Correction”, IEEE Transactions on Information Theory 50, 2315 (2004) arXiv:quant-ph/0304161 DOI
- [21]
- R. Wang and L. P. Pryadko, “Distance bounds for generalized bicycle codes”, (2022) arXiv:2203.17216
- [22]
- H.-K. Lin and L. P. Pryadko, “Quantum two-block group algebra codes”, (2023) arXiv:2306.16400
- [23]
- N. Delfosse, M. E. Beverland, and M. A. Tremblay, “Bounds on stabilizer measurement circuits and obstructions to local implementations of quantum LDPC codes”, (2021) arXiv:2109.14599
- [24]
- N. Baspin, O. Fawzi, and A. Shayeghi, “A lower bound on the overhead of quantum error correction in low dimensions”, (2023) arXiv:2302.04317
- [25]
- A. Lubotzky, R. Phillips, and P. Sarnak, “Ramanujan graphs”, Combinatorica 8, 261 (1988) DOI
- [26]
- G. Davidoff, P. Sarnak, and A. Valette, Elementary Number Theory, Group Theory and Ramanujan Graphs (Cambridge University Press, 2001) DOI
- [27]
- W. Zeng and L. P. Pryadko, “Higher-Dimensional Quantum Hypergraph-Product Codes with Finite Rates”, Physical Review Letters 122, (2019) arXiv:1810.01519 DOI
- [28]
- S. M. Girvin, “Circuit QED: superconducting qubits coupled to microwave photons”, Quantum Machines: Measurement and Control of Engineered Quantum Systems 113 (2014) DOI
- [29]
- C. Vuillot, A. Ciani, and B. M. Terhal, “Homological Quantum Rotor Codes: Logical Qubits from Torsion”, (2023) arXiv:2303.13723
- [30]
- M. Capalbo et al., “Randomness conductors and constant-degree lossless expanders”, Proceedings of the thiry-fourth annual ACM symposium on Theory of computing (2002) DOI
- [31]
- T.-C. Lin and M.-H. Hsieh, “\(c^3\)-Locally Testable Codes from Lossless Expanders”, (2022) arXiv:2201.11369
- [32]
- T.-C. Lin and M.-H. Hsieh, “Good quantum LDPC codes with linear time decoder from lossless expanders”, (2022) arXiv:2203.03581
- [33]
- H. Bombin, “Gauge Color Codes: Optimal Transversal Gates and Gauge Fixing in Topological Stabilizer Codes”, (2015) arXiv:1311.0879
- [34]
- F. H. E. Watson et al., “Qudit color codes and gauge color codes in all spatial dimensions”, Physical Review A 92, (2015) arXiv:1503.08800 DOI
- [35]
- A. Yu. Kitaev, “Fault-tolerant quantum computation by anyons”, Annals of Physics 303, 2 (2003) arXiv:quant-ph/9707021 DOI
- [36]
- H. Watanabe, M. Cheng, and Y. Fuji, “Ground state degeneracy on torus in a family of ZN toric code”, Journal of Mathematical Physics 64, (2023) arXiv:2211.00299 DOI
- [37]
- M. Hagiwara et al., “Spatially Coupled Quasi-Cyclic Quantum LDPC Codes”, (2011) arXiv:1102.3181
- [38]
- S. Yang and R. Calderbank, “Spatially-Coupled QDLPC Codes”, (2023) arXiv:2305.00137
- [39]
- H. Bombin, “Topological Order with a Twist: Ising Anyons from an Abelian Model”, Physical Review Letters 105, (2010) arXiv:1004.1838 DOI
- [40]
- E. Rowell, R. Stong, and Z. Wang, “On classification of modular tensor categories”, (2009) arXiv:0712.1377
- [41]
- H. Bombin, M. Kargarian, and M. A. Martin-Delgado, “Interacting anyonic fermions in a two-body color code model”, Physical Review B 80, (2009) arXiv:0811.0911 DOI
- [42]
- H. Bombin, G. Duclos-Cianci, and D. Poulin, “Universal topological phase of two-dimensional stabilizer codes”, New Journal of Physics 14, 073048 (2012) arXiv:1103.4606 DOI
- [43]
- S. Roberts and D. J. Williamson, “3-Fermion Topological Quantum Computation”, PRX Quantum 5, (2024) arXiv:2011.04693 DOI
- [44]
- H. Ma et al., “Fracton topological order via coupled layers”, Physical Review B 95, (2017) arXiv:1701.00747 DOI
- [45]
- W. Shirley, K. Slagle, and X. Chen, “Fractional excitations in foliated fracton phases”, Annals of Physics 410, 167922 (2019) arXiv:1806.08625 DOI
- [46]
- T. Rakovszky and V. Khemani, “The Physics of (good) LDPC Codes II. Product constructions”, (2024) arXiv:2402.16831
- [47]
- B. Zeng et al., “Local unitary versus local Clifford equivalence of stabilizer and graph states”, Physical Review A 75, (2007) arXiv:quant-ph/0611214 DOI
- [48]
- S. X. Cui, D. Gottesman, and A. Krishna, “Diagonal gates in the Clifford hierarchy”, Physical Review A 95, (2017) arXiv:1608.06596 DOI
- [49]
- B. J. Brown, N. H. Nickerson, and D. E. Browne, “Fault-tolerant error correction with the gauge color code”, Nature Communications 7, (2016) arXiv:1503.08217 DOI
- [50]
- N. Rengaswamy et al., “Synthesis of Logical Clifford Operators via Symplectic Geometry”, 2018 IEEE International Symposium on Information Theory (ISIT) (2018) arXiv:1803.06987 DOI
- [51]
- A. R. Calderbank et al., “Quantum Error Correction via Codes over GF(4)”, (1997) arXiv:quant-ph/9608006
- [52]
- A. R. Calderbank et al., “Quantum Error Correction via Codes over GF(4)”, (1997) arXiv:quant-ph/9608006
- [53]
- H. Goto, “Many-hypercube codes: High-rate quantum error-correcting codes for high-performance fault-tolerant quantum computation”, (2024) arXiv:2403.16054