\(D\)-dimensional twisted toric code[1] 

Description

Extenstion of the Kitaev toric code to higher-dimensional lattices with shifted (a.k.a twisted) boundary conditions. Such boundary conditions yields quibit geometries that are tori \(\mathbb{R}^D/\Lambda\), where \(\Lambda\) is an arbitrary \(D\)-dimensional lattice. Picking a hypercubic lattice yields the ordinary \(D\)-dimensional toric code. It is conjectured that appropriate twisted boundary conditions yield multi-dimensional toric code families with linear distance and logarithmic-weight stabilizer generators [1].

Protection

Some higher-dimensional toric codes protect against burst errors [2].

Parent

Child

  • Toric code — The \(D\)-dimensional twisted toric code reduces to the toric code for \(D=2\) and a square lattice.

Cousin

  • Quantum LDPC (QLDPC) code — It is conjectured that appropriate twisted boundary conditions yield multi-dimensional toric code families with linear distance and logarithmic-weight stabilizer generators [1].

References

[1]
M. B. Hastings, “Quantum Codes from High-Dimensional Manifolds”, (2016) arXiv:1608.05089
[2]
C. C. Trinca et al., “On the Construction of New Toric Quantum Codes and Quantum Burst-Error Correcting Codes”, (2022) arXiv:2205.13582
Page edit log

Your contribution is welcome!

on github.com (edit & pull request)— see instructions

edit on this site

Zoo Code ID: higher_dimensional_toric

Cite as:
\(D\)-dimensional twisted toric code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2024. https://errorcorrectionzoo.org/c/higher_dimensional_toric
BibTeX:
@incollection{eczoo_higher_dimensional_toric, title={\(D\)-dimensional twisted toric code}, booktitle={The Error Correction Zoo}, year={2024}, editor={Albert, Victor V. and Faist, Philippe}, url={https://errorcorrectionzoo.org/c/higher_dimensional_toric} }
Share via:
Twitter | Mastodon |  | E-mail
Permanent link:
https://errorcorrectionzoo.org/c/higher_dimensional_toric

Cite as:

\(D\)-dimensional twisted toric code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2024. https://errorcorrectionzoo.org/c/higher_dimensional_toric

Github: https://github.com/errorcorrectionzoo/eczoo_data/edit/main/codes/quantum/qubits/stabilizer/topological/surface/higher_d/higher_dimensional_toric.yml.