[Jump to code hierarchy]

\(D\)-dimensional twisted toric code[14]

Description

Extension of the Kitaev toric code to higher-dimensional lattices with regular or shifted (a.k.a. twisted) boundary conditions. Such boundary conditions yields quibit geometries that are tori \(\mathbb{R}^D/\Lambda\), where \(\Lambda\) is an arbitrary \(D\)-dimensional lattice. Picking a hypercubic lattice yields the ordinary \(D\)-dimensional toric code. It is conjectured that appropriate twisted boundary conditions yield multi-dimensional toric code families with linear distance and logarithmic-weight stabilizer generators [4].

Protection

In two dimensions, different choices for the periodic boundary conditions yield higher-rate codes with parameters \([[L^2+1,2,L]]\) for odd \(L\) [2], and \([[L^2,2,L]]\) for even \(L\) [3]. Some higher-dimensional toric codes protect against burst errors [5].

Gates

Higher-dimensional toric codes can admit a cup product structure and can thus have logical gates in the Clifford hierarchy implemented by constant-depth Clifford circuits [6].

Cousin

  • Quantum LDPC (QLDPC) code— It is conjectured that appropriate twisted boundary conditions yield multi-dimensional toric code families with linear distance and logarithmic-weight stabilizer generators [4].

References

[1]
H. Bombin and M. A. Martin-Delgado, “Topological quantum error correction with optimal encoding rate”, Physical Review A 73, (2006) arXiv:quant-ph/0602063 DOI
[2]
H. Bombin and M. A. Martin-Delgado, “Homological error correction: Classical and quantum codes”, Journal of Mathematical Physics 48, (2007) arXiv:quant-ph/0605094 DOI
[3]
C. D. Albuquerque et al., On Toric Quantum Codes, Int. J. Pure Appl. Math. 50, 221–-226 (2009).
[4]
M. B. Hastings, “Quantum Codes from High-Dimensional Manifolds”, (2016) arXiv:1608.05089
[5]
C. C. Trinca, J. C. Interlando, R. Palazzo Jr., A. A. de Andrade, and R. A. Watanabe, “On the Construction of New Toric Quantum Codes and Quantum Burst-Error Correcting Codes”, (2022) arXiv:2205.13582
[6]
N. P. Breuckmann, M. Davydova, J. N. Eberhardt, and N. Tantivasadakarn, “Cups and Gates I: Cohomology invariants and logical quantum operations”, (2024) arXiv:2410.16250
Page edit log

Your contribution is welcome!

on github.com (edit & pull request)— see instructions

edit on this site

Zoo Code ID: higher_dimensional_toric

Cite as:
\(D\)-dimensional twisted toric code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2025. https://errorcorrectionzoo.org/c/higher_dimensional_toric
BibTeX:
@incollection{eczoo_higher_dimensional_toric, title={\(D\)-dimensional twisted toric code}, booktitle={The Error Correction Zoo}, year={2025}, editor={Albert, Victor V. and Faist, Philippe}, url={https://errorcorrectionzoo.org/c/higher_dimensional_toric} }
Share via:
Twitter | Mastodon |  | E-mail
Permanent link:
https://errorcorrectionzoo.org/c/higher_dimensional_toric

Cite as:

\(D\)-dimensional twisted toric code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2025. https://errorcorrectionzoo.org/c/higher_dimensional_toric

Github: https://github.com/errorcorrectionzoo/eczoo_data/edit/main/codes/quantum/qubits/stabilizer/topological/surface/higher_d/higher_dimensional_toric.yml.