Galois-qudit non-stabilizer code[1] 

Description

The projection onto a stabilizer code is proportional to an equal sum over all elements of the stabilizer group \(\mathsf{S}\). Non-stabilizer codes generalize stabilizer codes by modifying the code projection with elements of a subset \(\mathsf{B}\subset\mathsf{S}\) called the Fourier description (see proof of Thm. 2.7 in Ref. [1]). When \(\mathsf{B}\) is a subgroup of \(\mathsf{S}\), then the code reduces to an ordinary stabilizer code.

The following non-stabilizer codes were constructed in Ref. [1]: \(((33, 155, 3))\), \(((15, 8, 3))\), \(((n, \lceil\frac{q^n}{n(q^2-1)}\rceil,2))_q\) and \(((n, 1+n(q-1),2))_q\), where \(n\) is odd. The last code family is a Galois-qudit extension of the non-additive six-qubit CWS code.

Encoding

The encoding circuit involves the application of quantum Fourier transform.

Decoding

The decoding circuit involves the application of phase estimation.

Parent

Children

  • \(((5,6,2))\) qubit code — The six-qubit CWS code is a non-stabilizer qubit code [1].
  • Galois-qudit stabilizer code — A non-stabilizer code is also a stabilizer code if its Fourier description \(\mathsf{B}\) is a subgroup of some Gottesman subgroup \(\mathsf{S}\). When \(\mathsf{B}\) is just a subset, the code is explicitly not a stabilizer code.

References

[1]
V. Arvind, P. P. Kurur, and K. R. Parthasarathy, “Nonstabilizer Quantum Codes from Abelian Subgroups of the Error Group”, (2002) arXiv:quant-ph/0210097
Page edit log

Your contribution is welcome!

on github.com (edit & pull request)

edit on this site

Zoo Code ID: non_stabilizer

Cite as:
“Galois-qudit non-stabilizer code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/non_stabilizer
BibTeX:
@incollection{eczoo_non_stabilizer, title={Galois-qudit non-stabilizer code}, booktitle={The Error Correction Zoo}, year={2022}, editor={Albert, Victor V. and Faist, Philippe}, url={https://errorcorrectionzoo.org/c/non_stabilizer} }
Share via:
Twitter | Mastodon |  | E-mail
Permanent link:
https://errorcorrectionzoo.org/c/non_stabilizer

Cite as:

“Galois-qudit non-stabilizer code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/non_stabilizer

Github: https://github.com/errorcorrectionzoo/eczoo_data/tree/main/codes/quantum/qudits_galois/non_stabilizer.yml.