Modular-qudit USt code[1,2] 


A modular-qubit code whose codespace consists of a direct sum of a modular-qubit stabilizer codespace and one or more of that stabilizer code's error spaces.

Given a subset \(T\) of coset representatives of \(\mathsf{N}(\mathsf{S})/\mathsf{S}\) of a modular-qudit stabilizer code \(((n,K))\) with codespace \(\mathsf{C}\) and stabilizer group \(\mathsf{S}\), one can construct the modular-qudit USt with codespace \begin{align} \mathsf{C}_{\text{USt}}=\bigoplus_{t\in T}t\mathsf{C}~. \tag*{(1)}\end{align} The parameters of the USt are \(((n,K|T|,d))\), where \(|T|\) is the number of chosen coset representatives. A modular-qudit USt is CSS-like when the underlying stabilizer code is CSS, so the coset representatives from the two classical codes underlying the CSS code.



  • Union stabilizer (USt) code — Modular-qudit union stabilizer codes reduce to union stabilizer codes for \(q=2\).
  • Modular-qudit CWS code — Any modular-qudit CWS code can be written as a modular-qudit USt whose (\(K=1\)) stabilizer code is the modular-qudit cluster state and whose coset representatives are constructed from the \(q\)-ary classical code over \(\mathbb{Z}_q\). Prime-dimensional modular-qudit CWS codes have a unique representation as USt codes [3]. Conversely, modular-qudit USt codes are equivalent to modular-qudit CWS codes via a single-Galois-qudit Clifford circuit as follows [4,5][6; Sec. 10.4]. The set of coset representatives of any modular-qudit USt can be extended to a larger set iterating over the underlying stabilizer code such that all codewords can be obtained from a single stabilizer state. Then, one can apply a single-qubit Clifford transformation to map said modular-qudit stabilizer state into a modular-qudit cluster state.
  • Modular-qudit stabilizer code — A modular-qudit stabilizer code with stabilizer group \(\mathsf{S}\) can be thought of as a modular-qudit USt with only the identity coset representative. Conversely, if \(K = q^k\), and if the set of coset representatives of a modular-qudit USt form a \(q\)-ary linear code over \(\mathbb{Z}_q\), then they can be absorbed into a modular-qudit stabilizer group that defines the USt.


S. Y. Looi et al., “Quantum-error-correcting codes using qudit graph states”, Physical Review A 78, (2008) arXiv:0712.1979 DOI
D. Hu et al., “Graphical nonbinary quantum error-correcting codes”, Physical Review A 78, (2008) arXiv:0801.0831 DOI
S. Beigi et al., “Symmetries of Codeword Stabilized Quantum Codes”, (2013) arXiv:1303.7020 DOI
Y. Li, I. Dumer, and L. P. Pryadko, “Clustered Error Correction of Codeword-Stabilized Quantum Codes”, Physical Review Letters 104, (2010) arXiv:0907.2038 DOI
Li, Yunfan. Codeword Stabilized Quantum Codes and Their Error Correction. Diss. UC Riverside, 2010.
M. Grassl and M. Rötteler, “Nonadditive quantum codes”, Quantum Error Correction 261 (2013) DOI
Page edit log

Your contribution is welcome!

on (edit & pull request)— see instructions

edit on this site

Zoo Code ID: qudit_non_stabilizer

Cite as:
“Modular-qudit USt code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2024.
@incollection{eczoo_qudit_non_stabilizer, title={Modular-qudit USt code}, booktitle={The Error Correction Zoo}, year={2024}, editor={Albert, Victor V. and Faist, Philippe}, url={} }
Share via:
Twitter | Mastodon |  | E-mail
Permanent link:

Cite as:

“Modular-qudit USt code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2024.