Description
A modular-qubit code whose codespace consists of a direct sum of a modular-qubit stabilizer codespace and one or more of that stabilizer code's error spaces.
Given a subset \(T\) of coset representatives of \(\mathsf{N}(\mathsf{S})/\mathsf{S}\) of a modular-qudit stabilizer code \(((n,K))\) with codespace \(\mathsf{C}\) and stabilizer group \(\mathsf{S}\), one can construct the modular-qudit USt with codespace \begin{align} \mathsf{C}_{\text{USt}}=\bigoplus_{t\in T}t\mathsf{C}~. \tag*{(1)}\end{align} The parameters of the USt are \(((n,K|T|,d))\), where \(|T|\) is the number of chosen coset representatives. A modular-qudit USt is CSS-like when the underlying stabilizer code is CSS, so the coset representatives from the two classical codes underlying the CSS code.
Member of code lists
Primary Hierarchy
References
- [1]
- S. Y. Looi, L. Yu, V. Gheorghiu, and R. B. Griffiths, “Quantum-error-correcting codes using qudit graph states”, Physical Review A 78, (2008) arXiv:0712.1979 DOI
- [2]
- D. Hu, W. Tang, M. Zhao, Q. Chen, S. Yu, and C. H. Oh, “Graphical nonbinary quantum error-correcting codes”, Physical Review A 78, (2008) arXiv:0801.0831 DOI
- [3]
- S. Beigi, J. Chen, M. Grassl, Z. Ji, Q. Wang, and B. Zeng, “Symmetries of Codeword Stabilized Quantum Codes”, (2013) arXiv:1303.7020 DOI
- [4]
- Y. Li, I. Dumer, and L. P. Pryadko, “Clustered Error Correction of Codeword-Stabilized Quantum Codes”, Physical Review Letters 104, (2010) arXiv:0907.2038 DOI
- [5]
- Li, Yunfan. Codeword Stabilized Quantum Codes and Their Error Correction. Diss. UC Riverside, 2010.
- [6]
- M. Grassl and M. Rötteler, “Nonadditive quantum codes”, Quantum Error Correction 261 (2013) DOI
Page edit log
- Victor V. Albert (2024-03-28) — most recent
- Victor V. Albert (2024-02-11)
Cite as:
“Modular-qudit USt code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2024. https://errorcorrectionzoo.org/c/qudit_non_stabilizer