[Jump to code hierarchy]

Modular-qudit USt code[1,2]

Description

A modular-qubit code whose codespace consists of a direct sum of a modular-qubit stabilizer codespace and one or more of that stabilizer code's error spaces.

Given a subset \(T\) of coset representatives of \(\mathsf{N}(\mathsf{S})/\mathsf{S}\) of a modular-qudit stabilizer code \(((n,K))\) with codespace \(\mathsf{C}\) and stabilizer group \(\mathsf{S}\), one can construct the modular-qudit USt with codespace \begin{align} \mathsf{C}_{\text{USt}}=\bigoplus_{t\in T}t\mathsf{C}~. \tag*{(1)}\end{align} The parameters of the USt are \(((n,K|T|,d))\), where \(|T|\) is the number of chosen coset representatives. A modular-qudit USt is CSS-like when the underlying stabilizer code is CSS, so the coset representatives from the two classical codes underlying the CSS code.

Member of code lists

Primary Hierarchy

Parents
Modular-qudit USt code
Children
Any modular-qudit CWS code can be written as a modular-qudit USt whose (\(K=1\)) stabilizer code is the modular-qudit cluster state and whose coset representatives are constructed from the \(q\)-ary classical code over \(\mathbb{Z}_q\). Prime-dimensional modular-qudit CWS codes have a unique representation as USt codes [3]. Conversely, modular-qudit USt codes are equivalent to modular-qudit CWS codes via a single-Galois-qudit Clifford circuit as follows [4,5][6; Sec. 10.4]. The set of coset representatives of any modular-qudit USt can be extended to a larger set iterating over the underlying stabilizer code such that all codewords can be obtained from a single stabilizer state. Then, one can apply a single-qubit Clifford transformation to map said modular-qudit stabilizer state into a modular-qudit cluster state.
A modular-qudit stabilizer code with stabilizer group \(\mathsf{S}\) can be thought of as a modular-qudit USt with only the identity coset representative. Conversely, if \(K = q^k\), and if the set of coset representatives of a modular-qudit USt form a \(q\)-ary linear code over \(\mathbb{Z}_q\), then they can be absorbed into a modular-qudit stabilizer group that defines the USt.

References

[1]
S. Y. Looi, L. Yu, V. Gheorghiu, and R. B. Griffiths, “Quantum-error-correcting codes using qudit graph states”, Physical Review A 78, (2008) arXiv:0712.1979 DOI
[2]
D. Hu, W. Tang, M. Zhao, Q. Chen, S. Yu, and C. H. Oh, “Graphical nonbinary quantum error-correcting codes”, Physical Review A 78, (2008) arXiv:0801.0831 DOI
[3]
S. Beigi, J. Chen, M. Grassl, Z. Ji, Q. Wang, and B. Zeng, “Symmetries of Codeword Stabilized Quantum Codes”, (2013) arXiv:1303.7020 DOI
[4]
Y. Li, I. Dumer, and L. P. Pryadko, “Clustered Error Correction of Codeword-Stabilized Quantum Codes”, Physical Review Letters 104, (2010) arXiv:0907.2038 DOI
[5]
Li, Yunfan. Codeword Stabilized Quantum Codes and Their Error Correction. Diss. UC Riverside, 2010.
[6]
M. Grassl and M. Rötteler, “Nonadditive quantum codes”, Quantum Error Correction 261 (2013) DOI
Page edit log

Your contribution is welcome!

on github.com (edit & pull request)— see instructions

edit on this site

Zoo Code ID: qudit_non_stabilizer

Cite as:
“Modular-qudit USt code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2024. https://errorcorrectionzoo.org/c/qudit_non_stabilizer
BibTeX:
@incollection{eczoo_qudit_non_stabilizer, title={Modular-qudit USt code}, booktitle={The Error Correction Zoo}, year={2024}, editor={Albert, Victor V. and Faist, Philippe}, url={https://errorcorrectionzoo.org/c/qudit_non_stabilizer} }
Share via:
Twitter | Mastodon |  | E-mail
Permanent link:
https://errorcorrectionzoo.org/c/qudit_non_stabilizer

Cite as:

“Modular-qudit USt code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2024. https://errorcorrectionzoo.org/c/qudit_non_stabilizer

Github: https://github.com/errorcorrectionzoo/eczoo_data/edit/main/codes/quantum/qudits/nonstabilizer/union_stabilizer/qudit_non_stabilizer.yml.