Modular-qudit stabilizer code[1]

Description

An \(((n,K,d))_q\) modular-qudit code whose logical subspace is the joint eigenspace of commuting qudit Pauli operators forming the code's stabilizer group \(\mathsf{S}\). Traditionally, the logical subspace is the joint \(+1\) eigenspace, and the stabilizer group does not contain \(e^{i \phi} I\) for any \(\phi \neq 0\). The distance \(d\) is the minimum weight of a qudit Pauli string that implements a nontrivial logical operation in the code.

A modular-qudit stabilizer code encoding an integer number of qudits (\(K=q^k\)) is denoted as \([[n,k]]_{\mathbb{Z}_q}\) or \([[n,k,d]]_{\mathbb{Z}_q}\). For composite \(q\), such codes need not encode an integer number of qudits, with \(K=q^n/|\mathsf{S}|\) [2]. This is because \(|{\mathsf{S}}|\) need not be a power of \(q\), as group generators may have different orders. As a result, \([[n,k,d]]\) notation is often used with non-integer \(k=\log_q K\). Prime-qudit stabilizer codes, where \(q=p\) for some prime \(p\), do not suffer from this issue and encode \(n-k\) logical qudits, with \(K=p^{n-k}\).

Each code can be represented by a check matrix (a.k.a. stabilizer generator matrix) \(H=(A|B)\), where each row \((a|b)\) is the \(q\)-ary symplectic representation of a stabilizer generator. The check matrix can be brought into standard form via Gaussian elimination [2].

Protection

Detects errors on up to \(d-1\) qudits, and corrects erasure errors on up to \(d-1\) qudits. More generally, define the normalizer \(\mathsf{N(S)}\) of \(\mathsf{S}\) to be the set of all Pauli operators that commute with all \(S\in\mathsf{S}\). A stabilizer code can correct a Pauli error set \({\mathcal{E}}\) if and only if \(E^\dagger F \notin \mathsf{N(S)}\setminus \mathsf{S}\) for all \(E,F \in {\mathcal{E}}\).

Decoding

The structure of stabilizer codes allows for syndrome-based decoding, where errors are corrected based on the results of stabilizer measurements (syndromes).Trellis decoder for prime-dimensional qudits, which builds a compact representation of the algebraic structure of the normalizer \(\mathsf{N(S)}\) [3].

Notes

A standardized definition of the qudit stabilizer group is developed in [2].The number of modular-qudit stabilizer codes was determined in Ref. [4].

Parents

  • Modular-qudit code
  • Stabilizer code
  • Quantum Lego code — Modular-qudit stabilizer codes are quantum Lego codes built out of atomic blocks such as the 2-qudit repetition code, single-qudit trivial stabilizer codes, and tensor-products of the \(|0\rangle\) state.

Children

Cousins

  • Translationally invariant stabilizer code — Modular-qudit stabilizer codes can be thought of as translationally-invariant stabilizer codes for dimension \(D = 0\), with the lattice consisting of a single site.
  • Abelian topological code — All non-chiral abelian topological orders can be realized as modular-qudit stabilizer codes [5].
  • Qubit stabilizer code — Modular-qudit stabilizer codes for prime-dimensional qudits \(q=p\) inherit most of the features of qubit stabilizer codes, including encoding an integer number of qudits and a Pauli group with a unique number of generators. Conversely, qubit codes can be extended to modular-qudit codes by decorating appropriate generators with powers. For example, \([[4,2,2]]\) qubit code generators can be adjusted to \(ZZZZ\) and \(XX^{-1} XX^{-1}\). A systematic procedure extending a qubit code to prime-qudit codes involves putting its generator matrix into local-dimension-invariant (LDI) form [6]. Various bounds exist on the distance of the resulting codes [7][8].
  • Galois-qudit stabilizer code — Recalling that \(q=p^m\), Galois-qudit stabilizer codes can also be treated as prime-qudit stabilizer codes on \(mn\) qudits, giving \(k=nm-r\) [9]. The case \(m=1\) reduces to conventional prime-qudit stabilizer codes on \(n\) qudits.

References

[1]
D. Gottesman, “Stabilizer Codes and Quantum Error Correction”, (1997) arXiv:quant-ph/9705052
[2]
V. Gheorghiu, “Standard form of qudit stabilizer groups”, Physics Letters A 378, 505 (2014) arXiv:1101.1519 DOI
[3]
E. Sabo, A. B. Aloshious, and K. R. Brown, “Trellis Decoding For Qudit Stabilizer Codes And Its Application To Qubit Topological Codes”, (2022) arXiv:2106.08251
[4]
T. Singal et al., “Counting stabiliser codes for arbitrary dimension”, (2022) arXiv:2209.01449
[5]
T. D. Ellison et al., “Pauli Stabilizer Models of Twisted Quantum Doubles”, PRX Quantum 3, (2022) arXiv:2112.11394 DOI
[6]
L. G. Gunderman, “Local-dimension-invariant qudit stabilizer codes”, Physical Review A 101, (2020) arXiv:1910.08122 DOI
[7]
A. J. Moorthy and L. G. Gunderman, “Local-dimension-invariant Calderbank-Shor-Steane Codes with an Improved Distance Promise”, (2021) arXiv:2110.11510
[8]
L. G. Gunderman, “Degenerate local-dimension-invariant stabilizer codes and an alternative bound for the distance preservation condition”, Physical Review A 105, (2022) arXiv:2110.15274 DOI
[9]
A. Ashikhmin and E. Knill, “Nonbinary quantum stabilizer codes”, IEEE Transactions on Information Theory 47, 3065 (2001) DOI
Page edit log

Your contribution is welcome!

on github.com (edit & pull request)

edit on this site

Zoo Code ID: qudit_stabilizer

Cite as:
“Modular-qudit stabilizer code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/qudit_stabilizer
BibTeX:
@incollection{eczoo_qudit_stabilizer, title={Modular-qudit stabilizer code}, booktitle={The Error Correction Zoo}, year={2022}, editor={Albert, Victor V. and Faist, Philippe}, url={https://errorcorrectionzoo.org/c/qudit_stabilizer} }
Share via:
Twitter | Mastodon |  | E-mail
Permanent link:
https://errorcorrectionzoo.org/c/qudit_stabilizer

Cite as:

“Modular-qudit stabilizer code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/qudit_stabilizer

Github: https://github.com/errorcorrectionzoo/eczoo_data/tree/main/codes/quantum/qudits/qudit_stabilizer.yml.