[Jump to code hierarchy]

\(q\)-ary code over \(\mathbb{Z}_q\)

Description

A code encoding \(K\) states (codewords) in \(n\) coordinates over the ring \(\mathbb{Z}_q\) of integers modulo \(q\).

Protection

In addition to the Hamming distance, codes over \(\mathbb{Z}_q\) are also defined over the Lee metric [1]. Code bounds exist under this metric [2].

Notes

See books [3,4] for introductions.

Cousins

  • Combinatorial design— Optimal constant-weight codes over \(\mathbb{Z}_q\) can be constructed [5] from a generalization of combinatorial designs to \(q\)-ary alphabets [6,7].
  • Modular-qudit code— Modular-qudit codes are quantum counterparts of \(q\)-ary codes over \(\mathbb{Z}_q\).
  • Julin-Golay code— Julin codes can be obtained from simple nonlinear codes over \(\mathbb{Z}_4\) using the Gray map [8].
  • Constant-weight block code— Optimal constant-weight codes over \(\mathbb{Z}_q\) can be constructed [5] from a generalization of combinatorial designs to \(q\)-ary alphabets [6,7].
  • \(q\)-ary code— \(q\)-ary codes for \(q=p\) prime are \(p\)-ary codes over \(\mathbb{Z}_p \cong \mathbb{F}_p\).
  • Polyphase code— Polyphase codes are spherical codes that can be obtained from \(q\)-ary codes over rings \(\mathbb{Z}_q\).

Primary Hierarchy

Parents
The space of \(q\)-ary codes over \(\mathbb{Z}_q\) under the Lee metric can be viewed as a finite symmetric space \(G/H\) with \(G = D_q \wr S_n\) [2][9; Table 3].
\(q\)-ary code over \(\mathbb{Z}_q\)
Children
A \(q\)-ary code over \(\mathbb{Z}_q\) reduces to a binary code at \(q=2\). Ternary computing may be more applicable than binary computing to cryptographic schemes [10,11].

References

[1]
C. Lee, “Some properties of nonbinary error-correcting codes”, IEEE Transactions on Information Theory 4, 77 (1958) DOI
[2]
J. ASTOLA, “THE LEE-SCHEME AND BOUNDS FOR LEE-CODES”, Cybernetics and Systems 13, 331 (1982) DOI
[3]
W. C. Huffman and V. Pless, Fundamentals of Error-Correcting Codes (Cambridge University Press, 2003) DOI
[4]
R. Roth, Introduction to Coding Theory (Cambridge University Press, 2006) DOI
[5]
T. Etzion, “Optimal constant weight codes over Zk and generalized designs”, Discrete Mathematics 169, 55 (1997) DOI
[6]
H. Hanani, “On Some Tactical Configurations”, Canadian Journal of Mathematics 15, 702 (1963) DOI
[7]
S.-T. Xia and F.-W. Fu, “Undetected error probability of q-ary constant weight codes”, Designs, Codes and Cryptography 48, 125 (2007) DOI
[8]
J. H. Conway and N. J. A. Sloane, “Quaternary constructions for the binary single-error-correcting codes of Julin, Best and others”, Designs, Codes and Cryptography 4, 31 (1994) DOI
[9]
C. Bachoc, D. C. Gijswijt, A. Schrijver, and F. Vallentin, “Invariant Semidefinite Programs”, International Series in Operations Research & Management Science 219 (2011) arXiv:1007.2905 DOI
[10]
B. Cambou and D. Telesca, “Ternary Computing to Strengthen Cybersecurity”, Advances in Intelligent Systems and Computing 898 (2018) DOI
[11]
S. Assiri, B. Cambou, D. D. Booher, D. Ghanai Miandoab, and M. Mohammadinodoushan, “Key Exchange using Ternary system to Enhance Security”, 2019 IEEE 9th Annual Computing and Communication Workshop and Conference (CCWC) (2019) DOI
Page edit log

Your contribution is welcome!

on github.com (edit & pull request)— see instructions

edit on this site

Zoo Code ID: q-ary_over_zq

Cite as:
\(q\)-ary code over \(\mathbb{Z}_q\)”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/q-ary_over_zq
BibTeX:
@incollection{eczoo_q-ary_over_zq, title={\(q\)-ary code over \(\mathbb{Z}_q\)}, booktitle={The Error Correction Zoo}, year={2022}, editor={Albert, Victor V. and Faist, Philippe}, url={https://errorcorrectionzoo.org/c/q-ary_over_zq} }
Share via:
Twitter | Mastodon |  | E-mail
Permanent link:
https://errorcorrectionzoo.org/c/q-ary_over_zq

Cite as:

\(q\)-ary code over \(\mathbb{Z}_q\)”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/q-ary_over_zq

Github: https://github.com/errorcorrectionzoo/eczoo_data/edit/main/codes/classical/rings/over_zq/q-ary_over_zq.yml.