Description
A code encoding \(K\) states (codewords) in \(n\) coordinates over the ring \(\mathbb{Z}_q\) of integers modulo \(q\).
Parent
Child
Cousins
- Julin-Golay code — Julin codes can be obtained from simple nonlinear codes over \(\mathbb{Z}_4\) using the Gray map [1].
- Polyphase code — Polyphase codes are spherical codes that can be obtained from \(q\)-ary codes over rings \(\mathbb{Z}_q\).
- Modular-qudit stabilizer code — Modular-qudit stabilizer codes are the closest quantum analogues of additive codes over \(\mathbb{Z}_q\) because addition in the ring corresponds to multiplication of stabilizers in the quantum case.
References
- [1]
- J. H. Conway and N. J. A. Sloane, “Quaternary constructions for the binary single-error-correcting codes of Julin, Best and others”, Designs, Codes and Cryptography 4, 31 (1994) DOI
Page edit log
- Victor V. Albert (2022-11-07) — most recent
Cite as:
“\(q\)-ary code over \(\mathbb{Z}_q\)”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/q-ary_over_zq