[Jump to code hierarchy]

\(q\)-ary linear code over \(\mathbb{Z}_q\)

Description

A code encoding \(K\) states (codewords) in \(n\) coordinates over the ring \(\mathbb{Z}_q\) of integers modulo \(q\) that is closed under codeword addition and scalar multiplication.

Cousins

  • Constantin-Rao (CR) code— CR codes, and their special cases the VT codes, can be converted to ternary codes with nice structure via a binary-to-ternary map \(00\to 0\), \(11\to 0\), \(01\to 1\), and \(10\to 2\) [1].
  • Bose–Chaudhuri–Hocquenghem (BCH) code— BCH codes for \(q=p\) prime field can also work as codes over the Lee metric [2].
  • Modular-qudit CSS code— The modular-qudit CSS construction uses two related \(q\)-ary linear codes over \(\mathbb{Z}_q\), \(C_X\) and \(C_Z\).

Member of code lists

Primary Hierarchy

Parents
For \(q>2\), additive codes need not be linear since linearity also requires closure under multiplication.
\(q\)-ary linear code over \(\mathbb{Z}_q\)
Children
Linear binary codes are linear \(q\)-ary codes over \(\mathbb{Z}_q\) for \(q=2\).

References

[1]
M. Grassl, P. W. Shor, G. Smith, J. Smolin, and B. Zeng, “New Constructions of Codes for Asymmetric Channels via Concatenation”, IEEE Transactions on Information Theory 61, 1879 (2015) arXiv:1310.7536 DOI
[2]
R. M. Roth and P. H. Siegel, “Lee-metric BCH codes and their application to constrained and partial-response channels”, IEEE Transactions on Information Theory 40, 1083 (1994) DOI
Page edit log

Your contribution is welcome!

on github.com (edit & pull request)— see instructions

edit on this site

Zoo Code ID: q-ary_linear_over_zq

Cite as:
\(q\)-ary linear code over \(\mathbb{Z}_q\)”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/q-ary_linear_over_zq
BibTeX:
@incollection{eczoo_q-ary_linear_over_zq, title={\(q\)-ary linear code over \(\mathbb{Z}_q\)}, booktitle={The Error Correction Zoo}, year={2022}, editor={Albert, Victor V. and Faist, Philippe}, url={https://errorcorrectionzoo.org/c/q-ary_linear_over_zq} }
Share via:
Twitter | Mastodon |  | E-mail
Permanent link:
https://errorcorrectionzoo.org/c/q-ary_linear_over_zq

Cite as:

\(q\)-ary linear code over \(\mathbb{Z}_q\)”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/q-ary_linear_over_zq

Github: https://github.com/errorcorrectionzoo/eczoo_data/edit/main/codes/classical/rings/over_zq/q-ary_linear_over_zq.yml.