Description
A linear code encoding \(K\) states (codewords) in \(n\) coordinates over the ring \(\mathbb{Z}_4\) of integers modulo 4.Cousins
- Niemeier lattice— Niemeier lattices can be constructed from quaternary codes over \(\mathbb{Z}_4\) via Construction \(A_4\) [2].
- Melas code— The even-weight subcode of the Melas code can be lifted to a code over \(\mathbb{Z}_4\) [3].
- Hergert code— Hergert codes can be seen, via the Gray map, as linear codes over \(\mathbb{Z}_4\) [4,5].
- Delsarte-Goethals (DG) code— DG codes can be seen, via the Gray map, as extended linear cyclic codes over \(\mathbb{Z}_4\) [4,5].
- Reed-Muller (RM) code— RM codes are images of linear quaternary codes over \(\mathbb{Z}_4\) under the Gray map [6; Sec. 6.3].
Member of code lists
Primary Hierarchy
Parents
Quaternary linear code over \(\mathbb{Z}_4\)
Children
References
- [1]
- N. Aydin, Y. Lu, and V. R. Onta, “An Updated Database of \(\mathbb{Z}_4\) Codes”, (2022) arXiv:2208.06832
- [2]
- A. Bonnecaze, P. Gaborit, M. Harada, M. Kitazume, and P. Solé, “Niemeier lattices and Type II codes over Z4”, Discrete Mathematics 205, 1 (1999) DOI
- [3]
- A. Alahmadi, H. Alhazmi, T. Helleseth, R. Hijazi, N. Muthana, and P. Solé, “On the lifted Melas code”, Cryptography and Communications 8, 7 (2015) DOI
- [4]
- A. R. Hammons, P. V. Kumar, A. R. Calderbank, N. J. A. Sloane, and P. Sole, “The Z/sub 4/-linearity of Kerdock, Preparata, Goethals, and related codes”, IEEE Transactions on Information Theory 40, 301 (1994) DOI
- [5]
- A. R. Hammons Jr., P. V. Kumar, A. R. Calderbank, N. J. A. Sloane, and P. Solé, “The Z_4-Linearity of Kerdock, Preparata, Goethals and Related Codes”, (2002) arXiv:math/0207208
- [6]
- S. T. Dougherty, "Codes over rings." Concise Encyclopedia of Coding Theory (Chapman and Hall/CRC, 2021) DOI
Page edit log
- Victor V. Albert (2022-03-04) — most recent
Cite as:
“Quaternary linear code over \(\mathbb{Z}_4\)”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/quaternary_over_z4