[Jump to code hierarchy]

Quaternary RM (QRM) code[1]

Alternative names: \(\mathbb{Z}_4\) RM code.

Description

A quaternary linear code over \(\mathbb{Z}_4\) that is a quaternary version of the RM code in that its binary image under the Gray map is an RM code. This code subsumes the quaternary images of the Kerdock and Preparata codes under the Gray map. The code is usually noted as QRM\((r,m)\), with its image under the Gray map yielding the RM code RM\((r,m)\) [1; Thm. 19].

Cousins

Member of code lists

References

[1]
A. R. Hammons Jr., P. V. Kumar, A. R. Calderbank, N. J. A. Sloane, and P. Solé, “The Z_4-Linearity of Kerdock, Preparata, Goethals and Related Codes”, (2002) arXiv:math/0207208
[2]
S. T. Dougherty, "Codes over rings." Concise Encyclopedia of Coding Theory (Chapman and Hall/CRC, 2021) DOI
[3]
P. Sole, "Generalized theta functions for lattice vector quantization", in Coding and Quantization, DIMACS Series in Dr,crete Mathenulies and Theoretical Computer Science, vol. 14. Providence, RH: American Math. Soc., 1993, pp. 27-32.
[4]
A. Bonnecaze, P. Sole, and A. R. Calderbank, “Quaternary quadratic residue codes and unimodular lattices”, IEEE Transactions on Information Theory 41, 366 (1995) DOI
Page edit log

Cite as:

“Quaternary RM (QRM) code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2024. https://errorcorrectionzoo.org/c/quaternary_reed_muller

Github: https://github.com/errorcorrectionzoo/eczoo_data/edit/main/codes/classical/rings/over_zq/over_z4/linear_over_z4/quaternary_reed_muller.yml.