[Jump to code hierarchy]

Self-dual code over \(\mathbb{Z}_q\)

Description

An additive linear code \(C\) over \(\mathbb{Z}_q\) that is equal to its dual, \(C^\perp = C\), where the dual is defined with respect to the standard inner product.

Protection

Extremal Type-II self-dual codes over \(\mathbb{Z}_4\) have been classified for \(n\leq 16\) [1,2], and there are 4744 such codes at \(n=24\) [3].

Notes

See Database of self-dual codes by M. Harada and A. Munemasa for a database of self-dual codes over \(\mathbb{Z}_{4}\), \(\mathbb{Z}_{6}\), \(\mathbb{Z}_{8}\), \(\mathbb{Z}_{9}\), and \(\mathbb{Z}_{10}\).

Cousins

Member of code lists

Primary Hierarchy

Parents
Self-dual code over \(\mathbb{Z}_q\)
Children
Harada-Kitazume codes are extremal Type II self-dual codes over \(\mathbb{Z}_4\) [8].
The octacode is self-dual over \(\mathbb{Z}_4\).
Pseudo Golay codes are extremal Type II self-dual codes over \(\mathbb{Z}_4\) [9; Thm. 9].

References

[1]
J. Fields, P. Gaborit, J. S. Leon, and V. Pless, “All self-dual Z/sub 4/ codes of length 15 or less are known”, IEEE Transactions on Information Theory 44, 311 (1998) DOI
[2]
V. Pless, J. S. Leon, and J. Fields, “All Z4Codes of Type II and Length 16 Are Known”, Journal of Combinatorial Theory, Series A 78, 32 (1997) DOI
[3]
A. Munemasa and R. A. L. Betty, “Classification of extremal type II \(\)\mathbb {Z}_4\(\)-codes of length 24”, Designs, Codes and Cryptography 92, 771 (2023) DOI
[4]
A. Bonnecaze, P. Sole, C. Bachoc, and B. Mourrain, “Type II codes over Z/sub 4/”, IEEE Transactions on Information Theory 43, 969 (1997) DOI
[5]
E. Bannai, S. T. Dougherty, M. Harada, and M. Oura, “Type II codes, even unimodular lattices, and invariant rings”, IEEE Transactions on Information Theory 45, 1194 (1999) DOI
[6]
W. C. Huffman and V. Pless, Fundamentals of Error-Correcting Codes (Cambridge University Press, 2003) DOI
[7]
M. Harada and M. Kitazume, “Z6-Code Constructions of the Leech Lattice and the Niemeier Lattices”, European Journal of Combinatorics 23, 573 (2002) DOI
[8]
M. Harada and M. Kitazume, “Z4-Code Constructions for the Niemeier Lattices and their Embeddings in the Leech Lattice”, European Journal of Combinatorics 21, 473 (2000) DOI
[9]
E. Rains, “Optimal self-dual codes over Z4”, Discrete Mathematics 203, 215 (1999) DOI
Page edit log

Your contribution is welcome!

on github.com (edit & pull request)— see instructions

edit on this site

Zoo Code ID: self_dual_over_zq

Cite as:
“Self-dual code over \(\mathbb{Z}_q\)”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2024. https://errorcorrectionzoo.org/c/self_dual_over_zq
BibTeX:
@incollection{eczoo_self_dual_over_zq, title={Self-dual code over \(\mathbb{Z}_q\)}, booktitle={The Error Correction Zoo}, year={2024}, editor={Albert, Victor V. and Faist, Philippe}, url={https://errorcorrectionzoo.org/c/self_dual_over_zq} }
Share via:
Twitter | Mastodon |  | E-mail
Permanent link:
https://errorcorrectionzoo.org/c/self_dual_over_zq

Cite as:

“Self-dual code over \(\mathbb{Z}_q\)”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2024. https://errorcorrectionzoo.org/c/self_dual_over_zq

Github: https://github.com/errorcorrectionzoo/eczoo_data/edit/main/codes/classical/rings/dual/self_dual_over_zq.yml.