[Jump to code hierarchy]

Dual code over \(\mathbb{Z}_q\)

Description

For any linear code \(C\) over \(\mathbb{Z}_q\), the dual code is the set of \(q\)-ary strings over \(\mathbb{Z}_q\) that are orthogonal to the codewords of \(C\) under the standard inner product modulo \(q\).

The dual code over \(\mathbb{Z}_q\) is \begin{align} C^\perp = \{ y\in \(\mathbb{Z}_q\)^{n} ~|~ x \cdot y=0 \mod q \forall x\in C\}~. \tag*{(1)}\end{align}

Protection

For \(q=4\), the dual of a code \(C=(n,4^{k_1} 2^{k_2})_{\mathbb{Z}_4}\) is \(C^{\perp} = (n,4^{n-k_1-k_2} 2^{k_2})\), whose generator matrix can be written in terms of the standard form of \(C\) [1; Prop. 1.2].

Member of code lists

References

[1]
Z. X. Wan, Quaternary Codes (WORLD SCIENTIFIC, 1997) DOI
Page edit log

Your contribution is welcome!

on github.com (edit & pull request)— see instructions

edit on this site

Zoo Code ID: dual_over_zq

Cite as:
“Dual code over \(\mathbb{Z}_q\)”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2024. https://errorcorrectionzoo.org/c/dual_over_zq
BibTeX:
@incollection{eczoo_dual_over_zq, title={Dual code over \(\mathbb{Z}_q\)}, booktitle={The Error Correction Zoo}, year={2024}, editor={Albert, Victor V. and Faist, Philippe}, url={https://errorcorrectionzoo.org/c/dual_over_zq} }
Share via:
Twitter | Mastodon |  | E-mail
Permanent link:
https://errorcorrectionzoo.org/c/dual_over_zq

Cite as:

“Dual code over \(\mathbb{Z}_q\)”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2024. https://errorcorrectionzoo.org/c/dual_over_zq

Github: https://github.com/errorcorrectionzoo/eczoo_data/edit/main/codes/classical/rings/over_zq/dual/dual_over_zq.yml.