[Jump to code hierarchy]

\(\Lambda_{24}\) Leech lattice[1]

Description

Even unimodular lattice in 24 dimensions that exhibits optimal packing. Its automorphism group is the Conway group \(.0\) a.k.a. Co\(_0\).

Protection

The \(\Lambda_{24}\) Leech lattice has a nominal coding gain of \(4\). It exhibits the densest packing [2] and highest kissing number of 196560 in 24 dimensions.

Notes

Popular summary of solution to the sphere-packing problem in Quanta Magazine.

Cousins

References

[1]
J. Leech, “Notes on Sphere Packings”, Canadian Journal of Mathematics 19, 251 (1967) DOI
[2]
H. Cohn, A. Kumar, S. Miller, D. Radchenko, and M. Viazovska, “The sphere packing problem in dimension \(24\)”, Annals of Mathematics 185, (2017) arXiv:1603.06518 DOI
[3]
A. R. Hammons, P. V. Kumar, A. R. Calderbank, N. J. A. Sloane, and P. Sole, “The Z/sub 4/-linearity of Kerdock, Preparata, Goethals, and related codes”, IEEE Transactions on Information Theory 40, 301 (1994) DOI
[4]
A. Bonnecaze and P. Solé, “Quaternary constructions of formally self-dual binary codes and unimodular lattices”, Lecture Notes in Computer Science 194 (1994) DOI
[5]
J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices and Groups (Springer New York, 1999) DOI
[6]
T. Ericson, and V. Zinoviev, eds. Codes on Euclidean spheres. Elsevier, 2001.
[7]
H. Cohn and A. Kumar, “Universally optimal distribution of points on spheres”, Journal of the American Mathematical Society 20, 99 (2006) arXiv:math/0607446 DOI
[8]
Feng-Wen Sun and H. C. A. van Tilborg, “The Leech lattice, the octacode, and decoding algorithms”, IEEE Transactions on Information Theory 41, 1097 (1995) DOI
[9]
H. Cohn, A. Kumar, S. D. Miller, D. Radchenko, and M. Viazovska, “Universal optimality of the \(E_8\) and Leech lattices and interpolation formulas”, (2022) arXiv:1902.05438
Page edit log

Your contribution is welcome!

on github.com (edit & pull request)— see instructions

edit on this site

Zoo Code ID: leech

Cite as:
\(\Lambda_{24}\) Leech lattice”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/leech
BibTeX:
@incollection{eczoo_leech, title={\(\Lambda_{24}\) Leech lattice}, booktitle={The Error Correction Zoo}, year={2022}, editor={Albert, Victor V. and Faist, Philippe}, url={https://errorcorrectionzoo.org/c/leech} }
Share via:
Twitter | Mastodon |  | E-mail
Permanent link:
https://errorcorrectionzoo.org/c/leech

Cite as:

\(\Lambda_{24}\) Leech lattice”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/leech

Github: https://github.com/errorcorrectionzoo/eczoo_data/edit/main/codes/classical/analog/lattice/bw/leech.yml.