Universally optimal sphere packing[1]
Description
A periodic sphere packing that (weakly) minimizes all completely monotonic potentials of square Euclidean distance among all periodic packings of the same density.
Parents
Children
- \(\Lambda_{24}\) Leech lattice — The \(\Lambda_{24}\) Leech lattice code is universally optimal [2].
- \(E_8\) Gosset lattice — The \(E_8\) Gosset lattice code is universally optimal [2].
Cousin
- \(A_2\) hexagonal lattice — The hexagonal lattice code is universally optimal among all lattices, but has not been proven to be optimal over all periodic packings [3].
References
- [1]
- H. Cohn and A. Kumar, “Universally optimal distribution of points on spheres”, Journal of the American Mathematical Society 20, 99 (2006) arXiv:math/0607446 DOI
- [2]
- H. Cohn, A. Kumar, S. D. Miller, D. Radchenko, and M. Viazovska, “Universal optimality of the \(E_8\) and Leech lattices and interpolation formulas”, (2022) arXiv:1902.05438
- [3]
- H. L. Montgomery, “Minimal theta functions”, Glasgow Mathematical Journal 30, 75 (1988) DOI
Page edit log
- Victor V. Albert (2023-03-05) — most recent
- Alexander Barg (2023-03-05)
- Victor V. Albert (2023-02-28)
Cite as:
“Universally optimal sphere packing”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2023. https://errorcorrectionzoo.org/c/univ_opt_analog