\(E_8\) Gosset lattice[1] 

Description

Unimodular even BW lattice in dimension \(8\), consisting of the Cayley integral octonions rescaled by \(\sqrt{2}\). The lattice corresponds to the \([8,4,4]\) Hamming code via Construction A.

A generator matrix is \begin{align} M = \begin{bmatrix} 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & -1 & 1 & 0 \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{bmatrix}. \tag*{(1)}\end{align}

Protection

The \(E_8\) lattice has a nominal coding gain of \(2\). It exhibits the densest lattice packing [25], densest packing [6], and highest kissing number of 240 [7] in eight dimensions.

Notes

Popular summary of solution to the sphere-packing problem in Quanta Magazine.

Parents

Cousins

References

[1]
Gosset, Thorold. "On the regular and semi-regular figures in space of n dimensions." Messenger of Mathematics 29 (1900): 43-48.
[2]
Blichfeldt, H. F. "On the minimum value of positive real quadratic forms in 6 variables." Bulletin of American Math. Soc 31 (1925): 386.
[3]
H. F. Blichfeldt, “The minimum value of quadratic forms, and the closest packing of spheres”, Mathematische Annalen 101, 605 (1929) DOI
[4]
H. F. Blichfeldt, “The minimum values of positive quadratic forms in six, seven and eight variables”, Mathematische Zeitschrift 39, 1 (1935) DOI
[5]
G. L. Watson, “The Class-Number of a Positive Quadratic Form”, Proceedings of the London Mathematical Society s3-13, 549 (1963) DOI
[6]
H. Cohn, A. Kumar, S. Miller, D. Radchenko, and M. Viazovska, “The sphere packing problem in dimension \(24\)”, Annals of Mathematics 185, (2017) arXiv:1603.06518 DOI
[7]
Vetchinkin, N. M. "Uniqueness of classes of positive quadratic and highest kissing number of 240 in eight dimensions"
[8]
T. Ericson, and V. Zinoviev, eds. Codes on Euclidean spheres. Elsevier, 2001.
[9]
H. Cohn, A. Kumar, S. D. Miller, D. Radchenko, and M. Viazovska, “Universal optimality of the \(E_8\) and Leech lattices and interpolation formulas”, (2022) arXiv:1902.05438
[10]
A. Bonnecaze and P. Solé, “Quaternary constructions of formally self-dual binary codes and unimodular lattices”, Lecture Notes in Computer Science 194 (1994) DOI
[11]
A. Bonnecaze, P. Sole, and A. R. Calderbank, “Quaternary quadratic residue codes and unimodular lattices”, IEEE Transactions on Information Theory 41, 366 (1995) DOI
[12]
H. Cohn and A. Kumar, “Universally optimal distribution of points on spheres”, Journal of the American Mathematical Society 20, 99 (2006) arXiv:math/0607446 DOI
Page edit log

Your contribution is welcome!

on github.com (edit & pull request)— see instructions

edit on this site

Zoo Code ID: eeight

Cite as:
\(E_8\) Gosset lattice”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/eeight
BibTeX:
@incollection{eczoo_eeight, title={\(E_8\) Gosset lattice}, booktitle={The Error Correction Zoo}, year={2022}, editor={Albert, Victor V. and Faist, Philippe}, url={https://errorcorrectionzoo.org/c/eeight} }
Share via:
Twitter | Mastodon |  | E-mail
Permanent link:
https://errorcorrectionzoo.org/c/eeight

Cite as:

\(E_8\) Gosset lattice”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/eeight

Github: https://github.com/errorcorrectionzoo/eczoo_data/edit/main/codes/classical/analog/lattice/root/eeight.yml.