Description
Spherical code whose codewords are points on the \(E_8\) Gosset lattice normalized to lie on the unit sphere.
The minimal shell of the lattice yields the \((8,240,1)\) code, whose codewords form the vertices of the \(4_{21}\) real polytope and the Witting complex polytope.
Cousin
Member of code lists
Primary Hierarchy
Parents
\(E_8\) Gosset lattice-shell code
Children
Codewords of the \(2_{41}\) real polytope form the second-smallest shell of the \(E_8\) lattice [3].
Witting polytope codewords form the minimal shell of the \(E_8\) lattice.
References
- [1]
- A. Korkine and G. Zolotareff, “Sur les formes quadratiques”, Mathematische Annalen 6, 366 (1873) DOI
- [2]
- E. Bannai and N. J. A. Sloane, “Uniqueness of Certain Spherical Codes”, Canadian Journal of Mathematics 33, 437 (1981) DOI
- [3]
- S. Borodachov, “Odd strength spherical designs attaining the Fazekas–Levenshtein bound for covering and universal minima of potentials”, Aequationes mathematicae 98, 509 (2024) DOI
Page edit log
- Victor V. Albert (2022-11-16) — most recent
Cite as:
“\(E_8\) Gosset lattice-shell code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/eeight_shell