[Jump to code hierarchy]

\([8,4,4]\) extended Hamming code[13]

Alternative names: \([8,4,4]\) \(e_8\) code.

Description

Extension of the \([7,4,3]\) Hamming code by a parity-check bit. The smallest doubly even self-dual code.

A generator matrix is \begin{align} \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 \\ \end{pmatrix}~. \tag*{(1)}\end{align}

Its automorphism group is \(GA(3,\mathbb{F}_2)\) [4].

Cousins

Primary Hierarchy

Parents
The \([8,4,4]\) extended Hamming code is the smallest doubly even self-dual code.
The \([8,4,4]\) extended Hamming code is a first-order RM code because it is self-dual and first-order RM codes are dual to extended Hamming codes.
The \([8,4,4]\) extended Hamming code is a group-algebra code for the group \(\mathbb{Z}_2 \times \mathbb{Z}_4\) [4].
\([8,4,4]\) extended Hamming code

References

[1]
C. E. Shannon, “A Mathematical Theory of Communication”, Bell System Technical Journal 27, 379 (1948) DOI
[2]
R. W. Hamming, “Error Detecting and Error Correcting Codes”, Bell System Technical Journal 29, 147 (1950) DOI
[3]
M. J. E. Golay, Notes on digital coding, Proc. IEEE, 37 (1949) 657.
[4]
M. Borello and W. Willems, “On the algebraic structure of quasi group codes”, (2021) arXiv:1912.09167
[5]
F. J. MacWilliams and N. J. A. Sloane. The theory of error correcting codes. Elsevier, 1977.
[6]
T. Ericson, and V. Zinoviev, eds. Codes on Euclidean spheres. Elsevier, 2001.
[7]
J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices and Groups (Springer New York, 1999) DOI
[8]
Self-Dual Codes and Invariant Theory (Springer-Verlag, 2006) DOI
[9]
P. Gaborit, V. Pless, P. Solé, and O. Atkin, “Type II Codes over F4”, Finite Fields and Their Applications 8, 171 (2002) DOI
[10]
Z. X. Wan, Quaternary Codes (WORLD SCIENTIFIC, 1997) DOI
Page edit log

Your contribution is welcome!

on github.com (edit & pull request)— see instructions

edit on this site

Zoo Code ID: hamming844

Cite as:
\([8,4,4]\) extended Hamming code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/hamming844
BibTeX:
@incollection{eczoo_hamming844, title={\([8,4,4]\) extended Hamming code}, booktitle={The Error Correction Zoo}, year={2022}, editor={Albert, Victor V. and Faist, Philippe}, url={https://errorcorrectionzoo.org/c/hamming844} }
Share via:
Twitter | Mastodon |  | E-mail
Permanent link:
https://errorcorrectionzoo.org/c/hamming844

Cite as:

\([8,4,4]\) extended Hamming code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/hamming844

Github: https://github.com/errorcorrectionzoo/eczoo_data/edit/main/codes/classical/bits/reed_muller/hamming/hamming844.yml.