Description
A block code of length \(n\) that either detects or corrects errors on at most two coordinates, i.e., has distance \(d \leq 5\).
See Ref. [1] for a comparison of short block codes.
Cousins
- Small-distance block quantum code
- Nordstrom-Robinson (NR) code— The NR code can be shortened to produce unique \((15, 256, 5)\), \((14, 128, 5)\), and \((13, 64, 5)\) codes [2; pg. 74].
Primary Hierarchy
Parents
Small-distance block code
Children
References
- [1]
- M. C. Coşkun, G. Durisi, T. Jerkovits, G. Liva, W. Ryan, B. Stein, and F. Steiner, “Efficient Error-Correcting Codes in the Short Blocklength Regime”, (2019) arXiv:1812.08562
- [2]
- F. J. MacWilliams and N. J. A. Sloane. The theory of error correcting codes. Elsevier, 1977.
Page edit log
- Victor V. Albert (2023-11-22) — most recent
Cite as:
“Small-distance block code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2023. https://errorcorrectionzoo.org/c/small_distance