Melas code[1,2] 

Description

Cyclic \([2^m -1, 2^m - 1 - 2m, 5]\) linear code with generator polynomial is \(g(x) = p(x)p(x)^{\star}\), where \(p(x)\) is a primitive polynomial of degree \(m\) that is the minimal polynomial over \(GF(2)\) of an element \(\alpha\) of order \(2^m -1\) in \(GF(2^m)\), \(m\) is odd and greater that five, and '\(\star\)' denotes reciprocation [3].

Decoding

Algebraic decoder [3].

Parents

Cousin

References

[1]
C. M. Melas, “A Cyclic Code for Double Error Correction [Letter to the Editor]”, IBM Journal of Research and Development 4, 364 (1960) DOI
[2]
G. van der Geer and M. van der Vlugt, “Generalized Hamming Weights of Melas Codes and Dual Melas Codes”, SIAM Journal on Discrete Mathematics 7, 554 (1994) DOI
[3]
A. Alahmadi et al., “On the lifted Melas code”, Cryptography and Communications 8, 7 (2015) DOI
Page edit log

Your contribution is welcome!

on github.com (edit & pull request)— see instructions

edit on this site

Zoo Code ID: melas

Cite as:
“Melas code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/melas
BibTeX:
@incollection{eczoo_melas, title={Melas code}, booktitle={The Error Correction Zoo}, year={2022}, editor={Albert, Victor V. and Faist, Philippe}, url={https://errorcorrectionzoo.org/c/melas} }
Share via:
Twitter | Mastodon |  | E-mail
Permanent link:
https://errorcorrectionzoo.org/c/melas

Cite as:

“Melas code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/melas

Github: https://github.com/errorcorrectionzoo/eczoo_data/edit/main/codes/classical/bits/cyclic/melas.yml.