Also known as Twisted code.
Description
A classical code \(C\) of length \(n\) over an alphabet \(R\) is \(\alpha\)-constacyclic (or \(\alpha\)-twisted) if, for each string \(c_1 c_2 \cdots c_n\in C\), the string \(\alpha c_n, c_1, \cdots, c_{n-1} \in C\). A \(-1\)-constacyclic code is called negacyclic.
Parent
- Quasi-twisted code — Quasi-twisted codes with \(\ell=1\) are constacyclic.
Children
- Cyclic code — Constacyclic codes with \(\alpha=1\) are cyclic.
- Berlekamp code — Berlekamp codes are negacyclic [1; Ch. 9].
Cousins
- Quantum maximum-distance-separable (MDS) code — Many quantum MDS codes are constructed from Hermitian self-orthogonal codes over \(GF(q^2)\) using the Hermitian construction [2–5], in particular from cyclic [6], constacyclic [5,7,8], and negacyclic [9] codes.
- Hermitian qubit code — Duadic constacyclic codes yield many examples of Hermitian qubit codes [10].
References
- [1]
- E. R. Berlekamp, Algebraic Coding Theory (WORLD SCIENTIFIC, 2014) DOI
- [2]
- M. GRASSL, T. BETH, and M. RÖTTELER, “ON OPTIMAL QUANTUM CODES”, International Journal of Quantum Information 02, 55 (2004) arXiv:quant-ph/0312164 DOI
- [3]
- R. Li and Z. Xu, “Construction of[[n,n−4,3]]qquantum codes for odd prime powerq”, Physical Review A 82, (2010) arXiv:0906.2509 DOI
- [4]
- X. He, L. Xu, and H. Chen, “New \(q\)-ary Quantum MDS Codes with Distances Bigger than \(\frac{q}{2}\)”, (2015) arXiv:1507.08355
- [5]
- L. Lu, W. Ma, R. Li, Y. Ma, and L. Guo, “New Quantum MDS codes constructed from Constacyclic codes”, (2018) arXiv:1803.07927
- [6]
- G. G. La Guardia, “New Quantum MDS Codes”, IEEE Transactions on Information Theory 57, 5551 (2011) DOI
- [7]
- X. Kai, S. Zhu, and P. Li, “Constacyclic Codes and Some New Quantum MDS Codes”, IEEE Transactions on Information Theory 60, 2080 (2014) DOI
- [8]
- B. Chen, S. Ling, and G. Zhang, “Application of Constacyclic Codes to Quantum MDS Codes”, IEEE Transactions on Information Theory 61, 1474 (2015) DOI
- [9]
- X. Kai and S. Zhu, “New Quantum MDS Codes From Negacyclic Codes”, IEEE Transactions on Information Theory 59, 1193 (2013) DOI
- [10]
- R. Dastbasteh, J. E. Martinez, A. Nemec, A. deMarti iOlius, and P. C. Bofill, “An infinite class of quantum codes derived from duadic constacyclic codes”, (2024) arXiv:2312.06504
Page edit log
- Victor V. Albert (2023-12-18) — most recent
Cite as:
“Constacyclic code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2023. https://errorcorrectionzoo.org/c/constacyclic