Here is a list of code families which contain quantum MDS codes.

Code | Description | MDS Detail |
---|---|---|

Cyclic linear \(q\)-ary code | A \(q\)-ary code of length \(n\) is cyclic if, for each codeword \(c_1 c_2 \cdots c_n\), the cyclically shifted string \(c_n c_1 \cdots c_{n-1}\) is also a codeword. A cyclic code is called primitive when \(n=q^r-1\) for some \(r\geq 2\). A shortened cyclic code is obtained from a cyclic code by taking only codewords with the first \(j\) zero entries, and deleting those zeroes. | Quantum MDS codes can be constructed from \(q\)-ary cyclic codes using the Hermitian construction [1]. |

Five-qubit perfect code | Five-qubit stabilizer code that is the smallest qubit stabilizer code to correct a single-qubit error. Its generators that are symmetric under cyclic permutation of qubits, \begin{align} \begin{split} S_1 &= IXZZX \\ S_2 &= XZZXI \\ S_3 &= ZZXIX \\ S_4 &= ZXIXZ~. \end{split} \tag*{(1)}\end{align} | The five-qubit code is one of the two qubit quantum MDS codes. |

Galois-qudit GRS code | True \(q\)-Galois-qudit stabilizer code constructed from generalized Reed-Solomon (GRS) codes via either the Hermitian construction [2–4] or the Galois-qudit CSS construction [5,6]. | Some Galois-qudit GRS codes are quantum MDS [2]. |

Galois-qudit RS code | Also called a polynomial code (QPyC). An \([[n,k,n-k+1]]_q\) (with \(q>n\)) Galois-qudit CSS code constructed using two Reed-Solomon codes over \(GF(q)\). | A polynomial code is a quantum MDS code when \(n-k_1=k_1-k_2\). |

Maximum distance separable (MDS) code | A \([n,k,d]_q\) binary or \(q\)-ary linear code is an MDS code if parameters \(n\), \(k\), \(d\), and \(q\) are such that the Singleton bound \begin{align} d \leq n-k+1 \tag*{(2)}\end{align} becomes an equality. A code is called almost MDS (AMDS) when \(d=n-k\). A bound for general \(q\)-ary codes can also be formulated; see [7; Thm. 1.9.10]. A code is near MDS (NMDS) if the code and its dual are mode AMDS. | |

Quantum maximum-distance-separable (MDS) code | An \(((n,q^k,d))\) code constructed out of \(q\)-dimensional qudits is an MDS code if parameters \(n\), \(k\), \(d\), and \(q\) are such that the quantum Singleton bound \begin{align} 2(d-1) \leq n-k \tag*{(3)}\end{align} becomes an equality. | |

Singleton-bound approaching AQECC | Approximate quantum code of rate \(R\) that can tolerate adversarial errors nearly saturating the quantum Singleton bound of \((1-R)/2\). The formulation of such codes relies on a notion of quantum list decoding. Sampling a description of this code can be done with an efficient randomized algorithm with \(2^{-\Omega(n)}\) failure probability. | Singleton-bound approaching AQECCs saturate the quantum Singleton bound. |

Three-qutrit code | A \([[3,1,2]]_3\) prime-qudit CSS code that is the smallest qutrit stabilizer code to detect a single-qutrit error. with stabilizer generators \(ZZZ\) and \(XXX\). The code defines a quantum secret-sharing scheme and serves as a minimal model for the AdS/CFT holographic duality. It is also the smallest non-trivial instance of a quantum maximum distance separable code (QMDS), saturating the quantum Singleton bound. The codewords are \begin{align} \begin{split} | \overline{0} \rangle &= \frac{1}{\sqrt{3}} (| 000 \rangle + | 111 \rangle + | 222 \rangle) \\ | \overline{1} \rangle &= \frac{1}{\sqrt{3}} (| 012 \rangle + | 120 \rangle + | 201 \rangle) \\ | \overline{2} \rangle &= \frac{1}{\sqrt{3}} (| 021 \rangle + | 102 \rangle + | 210 \rangle)~. \end{split} \tag*{(4)}\end{align} The elements in the superposition of each logical codeword are related to each other via cyclic permutations. | The three-qutrit code is the smallest nontrivial quantum MDS code. |

True Galois-qudit stabilizer code | Also called a linear stabilizer code. A \([[n,k,d]]_q\) stabilizer code whose stabilizer's symplectic representation forms a linear subspace. In other words, the set of \(q\)-ary vectors representing the stabilizer group is closed under both addition and multiplication by elements of \(GF(q)\). In contrast, Galois-qudit stabilizer codes admit sets of vectors that are closed under addition only. | Many MDS codes are constructed from Hermitian self-orthogonal codes over \(GF(q^2)\) using the Hermitian construction [8–11], in particular from cyclic [1], constacyclic [12,13] and negacyclic [14] codes. |

\([[2m,2m-2,2]]\) error-detecting code | Also known as the iceberg code. CSS stabilizer code for \(m\geq 2\) with generators \(\{XX\cdots X, ZZ\cdots Z\} \) acting on all \(2m\) physical qubits. Admits a basis such that each codeword is a superposition of a computational basis state labeled by a bitstring \(b\) and a state labeled by the negation of \(b\). Such states generalize the two-qubit Bell states and three-qubit GHz states and are often called (qubit) cat states or poor-man's GHz states. | The \([[2m,2m-2,2]]\) error-detecting code is one of the two qubit quantum MDS [8]. |

\([[4,2,2]]\) CSS code | Four-qubit CSS stabilizer code is the smallest qubit stabilizer code to detect a single-qubit error. Admits generators \(\{XXXX, ZZZZ\} \) and codewords \begin{align} \begin{split} |\overline{00}\rangle = (|0000\rangle + |1111\rangle)/\sqrt{2}~{\phantom{.}}\\ |\overline{01}\rangle = (|0011\rangle + |1100\rangle)/\sqrt{2}~{\phantom{.}}\\ |\overline{10}\rangle = (|0101\rangle + |1010\rangle)/\sqrt{2}~{\phantom{.}}\\ |\overline{11}\rangle = (|0110\rangle + |1001\rangle)/\sqrt{2}~. \end{split} \tag*{(5)}\end{align} This code is the smallest instance of the toric code, and its various single-qubit subcodes are small planar surface codes. |