Description
Self-complementary CSS code for \(m\geq 2\) with generators \(\{XX\cdots X, ZZ\cdots Z\} \) acting on all \(2m\) physical qubits. The code is constructed via the CSS construction from an SPC code and a repetition code [4; Sec. III]. This is the highest-rate distance-two code when an even number of qubits is used [5].
Admits a basis such that each codeword is a superposition of a computational basis state labeled by an even-weight bitstring \(b\) and a state labeled by the negation of \(b\). Its all-zero logical state is a conventional GHZ state. Removing the \(Z\)-type generator expands the number of codewords to include superpositions of odd-weight bitstrings and their negations.
All of its automorphisms lie in the Clifford group [6; Thm. 13].
Protection
Detects a single-qubit error.Encoding
Adaptive constant-depth circuit with geometrically local gates and measurements throughout [7,8].Transversal Gates
Transveral CNOT gates can be performed by first teleporting qubits into different code blocks [2; Sec. VII].Gates
Logical SWAP gates can be performed fault tolerantly using an ancilla qubit [2; Sec. VII].Universal set of gates, each of which is supported on two qubits [9].Fault-tolerant Clifford Trotter circuits that are linear in \(k\) using flag qubits via a solve-and-stitch algorithm and application of a logical identity circuit [10].Decoding
The \([[2m,2m-2,2]]\) error-detecting code [11] and its relative the code with single stabilizer \(XX\cdots X\) [12] admit continuous-time QEC against single AD errors.Fault Tolerance
Logical SWAP gates can be performed fault tolerantly using an ancilla qubit [2; Sec. VII].Two-qubit fault-tolerant state preparation, error detection and projective measurements [13] (see also [9]).CNOT and Hadamard gates using only two extra qubits and four-qubit fault-tolerant CCZ gate [14].Fault-tolerant Clifford Trotter circuits using flag qubits [10].Weak fault tolerance: any single gate error can be detected by measuring stabilizers and utilizing extra ancillas [15].Realizations
Trapped-ion devices: the \(m=5\) code has been realized on a 12-qubit device by Quantinuum [9].Notes
See description of the code in Ref. [16].The code is useful for entanglement distillation [17].The code is used in a fault-tolerant implementation of the QAOA algorithm [18].Cousins
- Single parity-check (SPC) code— The \([[2m,2m-2,2]]\) error-detecting code is constructed via the CSS construction from an SPC code and its dual repetition code [4; Sec. III].
- Repetition code— The \([[2m,2m-2,2]]\) error-detecting code is constructed via the CSS construction from an SPC code and its dual repetition code [4; Sec. III].
- Truncated trihexagonal (4.6.12) color code— The \([[2m,2m-2,2]]\) error-detecting code for \(m=4\) is a color code defined on a single octagon of the 6.6.6 or 4.6.12 tilings.
- Amplitude-damping (AD) code— The \([[2m,2m-2,2]]\) error-detecting code [11] and its relative the code with single stabilizer \(XX\cdots X\) [12] admit continuous-time QEC against single AD errors.
- \([[4,2,2]]_{G}\) four group-qudit code— The four group-qudit code can be extended to the \([[2m,2m-2,2]]_{G}\) group-qudit code [19; Sec. VIII]. The latter reduces to the \([[2m,2m-2,2]]\) error-detecting code for \(G=\mathbb{Z}_2\).
- Jump code— The subcode of the \([[2m,2m-2,2]]\) error-detecting code consisting of codewords labeled by weight-\(m\) bitstrings is a \(((2m,\frac{1}{2}{2m \choose m},1))_{m}\) optimal jump code [20][21; Corr. 9].
- Hybrid stabilizer code— The \([[2m+1,2m+2:1,2]]\) hybrid stabilizer code [22] (extendable to modular qudits [23]) is closely related to the \([[2m,2m-2,2]]\) error-detecting code.
- Trapezoid subsystem code— The trapezoid code family can be obtained from the \([[2m,2m-2,2]]\) error-detecting code by using some logical qubits as gauge qubits and imposing a two-dimensional qubit geometry [24].
Member of code lists
- Approximate quantum codes
- Color code and friends
- Concatenated quantum codes and friends
- Hamiltonian-based codes
- Quantum codes
- Quantum codes based on homological products
- Quantum codes with fault-tolerant gadgets
- Quantum codes with notable decoders
- Quantum codes with transversal gates
- Quantum CSS codes
- Quantum LDPC codes
- Quantum MDS codes and friends
- Realized quantum codes
- Small-distance quantum codes and friends
- Stabilizer codes
Primary Hierarchy
References
- [1]
- A. M. Steane, “Simple quantum error-correcting codes”, Physical Review A 54, 4741 (1996) arXiv:quant-ph/9605021 DOI
- [2]
- D. Gottesman, “Theory of fault-tolerant quantum computation”, Physical Review A 57, 127 (1998) arXiv:quant-ph/9702029 DOI
- [3]
- L. Viola, E. Knill, and S. Lloyd, “Dynamical Decoupling of Open Quantum Systems”, Physical Review Letters 82, 2417 (1999) arXiv:quant-ph/9809071 DOI
- [4]
- N. Rengaswamy, R. Calderbank, H. D. Pfister, and S. Kadhe, “Synthesis of Logical Clifford Operators via Symplectic Geometry”, 2018 IEEE International Symposium on Information Theory (ISIT) (2018) arXiv:1803.06987 DOI
- [5]
- A. R. Calderbank, E. M. Rains, P. W. Shor, and N. J. A. Sloane, “Quantum Error Correction via Codes over GF(4)”, (1997) arXiv:quant-ph/9608006
- [6]
- E. M. Rains, “Quantum codes of minimum distance two”, (1997) arXiv:quant-ph/9704043
- [7]
- A. B. Watts, R. Kothari, L. Schaeffer, and A. Tal, “Exponential separation between shallow quantum circuits and unbounded fan-in shallow classical circuits”, Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing (2019) arXiv:1906.08890 DOI
- [8]
- R. Verresen, N. Tantivasadakarn, and A. Vishwanath, “Efficiently preparing Schrödinger’s cat, fractons and non-Abelian topological order in quantum devices”, (2022) arXiv:2112.03061
- [9]
- C. N. Self, M. Benedetti, and D. Amaro, “Protecting expressive circuits with a quantum error detection code”, Nature Physics 20, 219 (2024) arXiv:2211.06703 DOI
- [10]
- Z. Chen and N. Rengaswamy, “Tailoring Fault-Tolerance to Quantum Algorithms”, (2024) arXiv:2404.11953
- [11]
- C. Ahn, H. Wiseman, and K. Jacobs, “Quantum error correction for continuously detected errors with any number of error channels per qubit”, Physical Review A 70, (2004) arXiv:quant-ph/0402067 DOI
- [12]
- C. Ahn, H. M. Wiseman, and G. J. Milburn, “Quantum error correction for continuously detected errors”, Physical Review A 67, (2003) arXiv:quant-ph/0302006 DOI
- [13]
- R. Chao and B. W. Reichardt, “Quantum Error Correction with Only Two Extra Qubits”, Physical Review Letters 121, (2018) arXiv:1705.02329 DOI
- [14]
- R. Chao and B. W. Reichardt, “Fault-tolerant quantum computation with few qubits”, npj Quantum Information 4, (2018) arXiv:1705.05365 DOI
- [15]
- C. Gerhard and T. A. Brun, “Weakly Fault-Tolerant Computation in a Quantum Error-Detecting Code”, (2024) arXiv:2408.14828
- [16]
- J. Preskill. Lecture notes on Quantum Computation. (1997–2020) URL
- [17]
- C. A. Pattison, G. Baranes, J. P. B. Ataides, M. D. Lukin, and H. Zhou, “Fast quantum interconnects via constant-rate entanglement distillation”, (2024) arXiv:2408.15936
- [18]
- Z. He, D. Amaro, R. Shaydulin, and M. Pistoia, “Performance of Quantum Approximate Optimization with Quantum Error Detection”, (2024) arXiv:2409.12104
- [19]
- P. Faist, S. Nezami, V. V. Albert, G. Salton, F. Pastawski, P. Hayden, and J. Preskill, “Continuous Symmetries and Approximate Quantum Error Correction”, Physical Review X 10, (2020) arXiv:1902.07714 DOI
- [20]
- G. Alber, Th. Beth, Ch. Charnes, A. Delgado, M. Grassl, and M. Mussinger, “Detected-jump-error-correcting quantum codes, quantum error designs, and quantum computation”, Physical Review A 68, (2003) arXiv:quant-ph/0208140 DOI
- [21]
- T. Beth, C. Charnes, M. Grassl, G. Alber, A. Delgado, and M. Mussinger, Designs, Codes and Cryptography 29, 51 (2003) DOI
- [22]
- A. Nemec and A. Klappenecker, “Infinite Families of Quantum-Classical Hybrid Codes”, (2020) arXiv:1911.12260
- [23]
- A. Nemec and A. Klappenecker, “Nonbinary Error-Detecting Hybrid Codes”, (2020) arXiv:2002.11075
- [24]
- P. Singkanipa, Z. Xia, and D. A. Lidar, “Families of \(d=2\) 2D subsystem stabilizer codes for universal Hamiltonian quantum computation with two-body interactions”, (2025) arXiv:2412.06744
- [25]
- M. GRASSL, T. BETH, and M. RÖTTELER, “ON OPTIMAL QUANTUM CODES”, International Journal of Quantum Information 02, 55 (2004) arXiv:quant-ph/0312164 DOI
- [26]
- M. Vasmer and A. Kubica, “Morphing Quantum Codes”, PRX Quantum 3, (2022) arXiv:2112.01446 DOI
Page edit log
- Connor Clayton (2024-03-15) — most recent
- Victor V. Albert (2022-12-03)
Cite as:
“\([[2m,2m-2,2]]\) error-detecting code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2024. https://errorcorrectionzoo.org/c/iceberg