Description
Self-complementary CSS code for \(m\geq 2\) with generators \(\{XX\cdots X, ZZ\cdots Z\} \) acting on all \(2m\) physical qubits. The code is constructed via the CSS construction from an SPC code and a repetition code [3; Sec. III]. This is the highest-rate distance-two code when an even number of qubits is used [4].
Admits a basis such that each codeword is a superposition of a computational basis state labeled by an even-weight bitstring \(b\) and a state labeled by the negation of \(b\). Its all-zero logical state is a conventional GHZ state.
All of its automorphisms lie in the Clifford group [5; Thm. 13].
Protection
Encoding
Transversal Gates
Gates
Fault Tolerance
Realizations
Notes
Parents
- Quantum multi-dimensional parity-check (QMDPC) code — The \([[2m,2m-2,2]]\) error-detecting code is a 1D QMDPC.
- Quantum maximum-distance-separable (MDS) code — The \([[2m,2m-2,2]]\) error-detecting code forms one of the two families qubit quantum MDS codes [16].
- Ball color code — The \([[2m,2m-2,2]]\) error-detecting code is a ball color code [17; Sec. III.A].
- Self-complementary quantum code
Children
- \([[4,2,2]]\) Four-qubit code — The \([[2m,2m-2,2]]\) error-detecting code for \(m=2\) reduces to the \([[4,2,2]]\) code.
- \([[6,4,2]]\) error-detecting code — The \([[2m,2m-2,2]]\) error-detecting code for \(m=3\) reduces to the \([[6,4,2]]\) error-detecting code.
Cousins
- Single parity-check (SPC) code — The \([[2m,2m-2,2]]\) error-detecting code is constructed via the CSS construction from an SPC code and its dual repetition code [3; Sec. III].
- Repetition code — The \([[2m,2m-2,2]]\) error-detecting code is constructed via the CSS construction from an SPC code and its dual repetition code [3; Sec. III].
- \([[4,2,2]]_{G}\) four group-qudit code — The four group-qudit code can be extended to the \([[2m,2m-2,2]]_{G}\) group-qudit code [18; Sec. VIII]. The latter reduces to the \([[2m,2m-2,2]]\) error-detecting code for \(G=\mathbb{Z}_2\).
- Jump code — The subcode of the \([[2m,2m-2,2]]\) error-detecting code consisting of codewords labeled by weight-\(m\) bitstrings is a \(((2m,\frac{1}{2}{2m \choose m},1))_{m}\) optimal jump code [19][20; Corr. 9].
- Hybrid stabilizer code — The \([[2m+1,2m+2:1,2]]\) hybrid stabilizer code [21] (extendable to modular qudits [22]) is closely related to the \([[2m,2m-2,2]]\) error-detecting code.
References
- [1]
- A. M. Steane, “Simple quantum error-correcting codes”, Physical Review A 54, 4741 (1996) arXiv:quant-ph/9605021 DOI
- [2]
- D. Gottesman, “Theory of fault-tolerant quantum computation”, Physical Review A 57, 127 (1998) arXiv:quant-ph/9702029 DOI
- [3]
- N. Rengaswamy et al., “Synthesis of Logical Clifford Operators via Symplectic Geometry”, 2018 IEEE International Symposium on Information Theory (ISIT) (2018) arXiv:1803.06987 DOI
- [4]
- A. R. Calderbank et al., “Quantum Error Correction via Codes over GF(4)”, (1997) arXiv:quant-ph/9608006
- [5]
- E. M. Rains, “Quantum codes of minimum distance two”, (1997) arXiv:quant-ph/9704043
- [6]
- A. B. Watts et al., “Exponential separation between shallow quantum circuits and unbounded fan-in shallow classical circuits”, Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing (2019) arXiv:1906.08890 DOI
- [7]
- R. Verresen, N. Tantivasadakarn, and A. Vishwanath, “Efficiently preparing Schrödinger’s cat, fractons and non-Abelian topological order in quantum devices”, (2022) arXiv:2112.03061
- [8]
- C. N. Self, M. Benedetti, and D. Amaro, “Protecting expressive circuits with a quantum error detection code”, Nature Physics (2024) arXiv:2211.06703 DOI
- [9]
- Z. Chen and N. Rengaswamy, “Tailoring Fault-Tolerance to Quantum Algorithms”, (2024) arXiv:2404.11953
- [10]
- R. Chao and B. W. Reichardt, “Quantum Error Correction with Only Two Extra Qubits”, Physical Review Letters 121, (2018) arXiv:1705.02329 DOI
- [11]
- R. Chao and B. W. Reichardt, “Fault-tolerant quantum computation with few qubits”, npj Quantum Information 4, (2018) arXiv:1705.05365 DOI
- [12]
- C. Gerhard and T. A. Brun, “Weakly Fault-Tolerant Computation in a Quantum Error-Detecting Code”, (2024) arXiv:2408.14828
- [13]
- J. Preskill. Lecture notes on Quantum Computation. (1997–2020) URL
- [14]
- C. A. Pattison et al., “Fast quantum interconnects via constant-rate entanglement distillation”, (2024) arXiv:2408.15936
- [15]
- Z. He et al., “Performance of Quantum Approximate Optimization with Quantum Error Detection”, (2024) arXiv:2409.12104
- [16]
- M. GRASSL, T. BETH, and M. RÖTTELER, “ON OPTIMAL QUANTUM CODES”, International Journal of Quantum Information 02, 55 (2004) arXiv:quant-ph/0312164 DOI
- [17]
- M. Vasmer and A. Kubica, “Morphing Quantum Codes”, PRX Quantum 3, (2022) arXiv:2112.01446 DOI
- [18]
- P. Faist et al., “Continuous Symmetries and Approximate Quantum Error Correction”, Physical Review X 10, (2020) arXiv:1902.07714 DOI
- [19]
- G. Alber et al., “Detected-jump-error-correcting quantum codes, quantum error designs, and quantum computation”, Physical Review A 68, (2003) arXiv:quant-ph/0208140 DOI
- [20]
- T. Beth et al., Designs, Codes and Cryptography 29, 51 (2003) DOI
- [21]
- A. Nemec and A. Klappenecker, “Infinite Families of Quantum-Classical Hybrid Codes”, (2020) arXiv:1911.12260
- [22]
- A. Nemec and A. Klappenecker, “Nonbinary Error-Detecting Hybrid Codes”, (2020) arXiv:2002.11075
Page edit log
- Connor Clayton (2024-03-15) — most recent
- Victor V. Albert (2022-12-03)
Cite as:
“\([[2m,2m-2,2]]\) error-detecting code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2024. https://errorcorrectionzoo.org/c/iceberg