[Jump to code hierarchy]

Small-distance block quantum code

Description

A block quantum code on \(n\) subsystems that either detects or corrects errors on at most two subsystems, i.e., have distance \(\leq 5\).

See Refs. [13] for small-distance codes.

Cousins

Primary Hierarchy

Parents
Small-distance block quantum code
Children
All non-trivial perfect codes have distance three.
The \(((10,24,3))\) qubit code can be combined to from an infinite family of distance-three qubit codes whose logical dimension is \(50\%\) larger than that of the optimal stabilizer code [5].
The \(((9,12,3))\) qubit code can be combined to from an infinite family of distance-three qubit codes whose logical dimension is \(50\%\) larger than that of the optimal stabilizer code [5].
All twisted \(1\)-group codes have a distance \(d \geq 2\).

References

[1]
E. M. Rains, “Quantum codes of minimum distance two”, (1997) arXiv:quant-ph/9704043
[2]
D. Hu, W. Tang, M. Zhao, Q. Chen, S. Yu, and C. H. Oh, “Graphical nonbinary quantum error-correcting codes”, Physical Review A 78, (2008) arXiv:0801.0831 DOI
[3]
W.-T. Yen and L.-Y. Hsu, “Optimal Nonadditive Quantum Error-Detecting Code”, (2009) arXiv:0901.1353
[4]
E. Kubischta and I. Teixeira, “Quantum Codes and Irreducible Products of Characters”, (2024) arXiv:2403.08999
[5]
S. Yu, Q. Chen, and C. H. Oh, “Two infinite families of nonadditive quantum error-correcting codes”, (2009) arXiv:0901.1935
Page edit log

Your contribution is welcome!

on github.com (edit & pull request)— see instructions

edit on this site

Zoo Code ID: small_distance_quantum

Cite as:
“Small-distance block quantum code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2023. https://errorcorrectionzoo.org/c/small_distance_quantum
BibTeX:
@incollection{eczoo_small_distance_quantum, title={Small-distance block quantum code}, booktitle={The Error Correction Zoo}, year={2023}, editor={Albert, Victor V. and Faist, Philippe}, url={https://errorcorrectionzoo.org/c/small_distance_quantum} }
Share via:
Twitter | Mastodon |  | E-mail
Permanent link:
https://errorcorrectionzoo.org/c/small_distance_quantum

Cite as:

“Small-distance block quantum code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2023. https://errorcorrectionzoo.org/c/small_distance_quantum

Github: https://github.com/errorcorrectionzoo/eczoo_data/edit/main/codes/quantum/properties/block/small_distance_quantum.yml.