\(((3,6,2))_{\mathbb{Z}_6}\) Euler code[1]
Description
Three-qudit error-detecting code with logical dimension \(K=6\) that is obtained from a particular AME state that serves as a solution to the 36 officers of Euler problem. The code is obtained from a \(((4,1,3))_{\mathbb{Z}_6}\) code.Notes
Popular summary in Quanta Magazine.Member of code lists
Primary Hierarchy
Parents
The \(((3,6,2))_{\mathbb{Z}_6}\) Euler code is an example of a non-stabilizer perfect-tensor code [1].
\(((3,6,2))_{\mathbb{Z}_6}\) Euler code
References
- [1]
- S. A. Rather, A. Burchardt, W. Bruzda, G. Rajchel-Mieldzioć, A. Lakshminarayan, and K. Życzkowski, “Thirty-six Entangled Officers of Euler: Quantum Solution to a Classically Impossible Problem”, Physical Review Letters 128, (2022) arXiv:2104.05122 DOI
Page edit log
- Victor V. Albert (2023-12-18) — most recent
Cite as:
“\(((3,6,2))_{\mathbb{Z}_6}\) Euler code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2023. https://errorcorrectionzoo.org/c/qudit_3_6_2