[Jump to code hierarchy]

\(((3,6,2))_{\mathbb{Z}_6}\) Euler code[1]

Description

Three-qudit error-detecting code with logical dimension \(K=6\) that is obtained from a particular AME state that serves as a solution to the 36 officers of Euler problem. The code is obtained from a \(((4,1,3))_{\mathbb{Z}_6}\) code.

Notes

Popular summary in Quanta Magazine.

Primary Hierarchy

Parents
The \(((3,6,2))_{\mathbb{Z}_6}\) Euler code is an example of a non-stabilizer perfect-tensor code [1].
\(((3,6,2))_{\mathbb{Z}_6}\) Euler code

References

[1]
S. A. Rather, A. Burchardt, W. Bruzda, G. Rajchel-Mieldzioć, A. Lakshminarayan, and K. Życzkowski, “Thirty-six Entangled Officers of Euler: Quantum Solution to a Classically Impossible Problem”, Physical Review Letters 128, (2022) arXiv:2104.05122 DOI
Page edit log

Your contribution is welcome!

on github.com (edit & pull request)— see instructions

edit on this site

Zoo Code ID: qudit_3_6_2

Cite as:
\(((3,6,2))_{\mathbb{Z}_6}\) Euler code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2023. https://errorcorrectionzoo.org/c/qudit_3_6_2
BibTeX:
@incollection{eczoo_qudit_3_6_2, title={\(((3,6,2))_{\mathbb{Z}_6}\) Euler code}, booktitle={The Error Correction Zoo}, year={2023}, editor={Albert, Victor V. and Faist, Philippe}, url={https://errorcorrectionzoo.org/c/qudit_3_6_2} }
Share via:
Twitter | Mastodon |  | E-mail
Permanent link:
https://errorcorrectionzoo.org/c/qudit_3_6_2

Cite as:

\(((3,6,2))_{\mathbb{Z}_6}\) Euler code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2023. https://errorcorrectionzoo.org/c/qudit_3_6_2

Github: https://github.com/errorcorrectionzoo/eczoo_data/edit/main/codes/quantum/qudits/nonstabilizer/qudit_3_6_2.yml.