[Jump to code hierarchy]

Perfect-tensor code

Alternative names: Absolutely maximally entangled (AME) code.

Description

Block quantum code encoding one subsystem into an odd number \(n\) subsystems whose encoding isometry is a perfect tensor. This code stems from an AME\((n,q)\) AME state, or equivalently, a \(((n+1,1,\lfloor (n+1)/2 \rfloor + 1))_{\mathbb{Z}_q}\) code.

Absolutely maximally entangled (AME) state: A state on \(n\) subsystems is \(d\)-uniform [13] (a.k.a. \(d\)-undetermined [4] or \(d\)-maximally mixed [5]) if all reduced density matrices on up to \(d\) subsystems are maximally mixed. A \(K\)-dimensional subspace of \(d-1\)-uniform states of \(q\)-dimensional subsystems is equivalent to a pure \(((n,K,d))_q\) code [6,7]. An AME state (a.k.a. maximally multi-partite entangled state [8,9]) is a \(\lfloor n/2 \rfloor\)-uniform state, corresponding to a pure \(((n,1,\lfloor n/2 \rfloor + 1))_{\mathbb{Z}_q}\) code. The rank-\(n\) tensor formed by the encoding isometry of such codes is a perfect tensor (a.k.a. multi-unitary tensor), meaning that it is proportional to an isometry for any bipartition of its indices into a set \(A\) and a complementary set \(A^{\perp}\) such that \(|A|\leq|A^{\perp}|\).

Stabilizer Galois-qudit perfect-tensor codes can be converted to AME states via established shortening/lengthening procedures [11][10; Table 1]. For example, an \([[n,0,d]]\) AME state can be converted into an \([[n-1,1,d-1]]\) perfect-tensor code by tracing over one qubit [12; Sec. 3.5].

Notes

See Ref. [13] and corresponding Table of AME states.\(d\)-uniform states are useful for masking quantum information [14].Quantum simulation of approximately \(d\)-uniform states is similar to that with random-state inputs in terms of Trotter error [15].

Cousins

Primary Hierarchy

Parents
Perfect-tensor code
Children
The \(((3,6,2))_{\mathbb{Z}_6}\) Euler code is an example of a non-stabilizer perfect-tensor code [30].
The \([[5,1,3]]_{\mathbb{Z}_q}\) code is a perfect-tensor code because it stems from the \([[6,0,4]]_{\mathbb{Z}_q}\) AME state [31; Thm. 13].
The three-qutrit code stems from the \([[4,0,3]]_3\) AME state [19,23,29].

References

[1]
P. Zanardi, C. Zalka, and L. Faoro, “Entangling power of quantum evolutions”, Physical Review A 62, (2000) arXiv:quant-ph/0005031 DOI
[2]
A. J. Scott, “Multipartite entanglement, quantum-error-correcting codes, and entangling power of quantum evolutions”, Physical Review A 69, (2004) arXiv:quant-ph/0310137 DOI
[3]
D. Goyeneche and K. Życzkowski, “Genuinely multipartite entangled states and orthogonal arrays”, Physical Review A 90, (2014) arXiv:1404.3586 DOI
[4]
M. H. Hsieh, W. T. Yen, and L. Y. Hsu, “Undetermined states: how to find them and their applications”, The European Physical Journal D 61, 261 (2010) arXiv:0809.3081 DOI
[5]
L. Arnaud and N. J. Cerf, “Exploring pure quantum states with maximally mixed reductions”, Physical Review A 87, (2013) arXiv:1211.4118 DOI
[6]
G. Gour and N. R. Wallach, “Entanglement of subspaces and error-correcting codes”, Physical Review A 76, (2007) arXiv:0704.0251 DOI
[7]
F. Huber and M. Grassl, “Quantum Codes of Maximal Distance and Highly Entangled Subspaces”, Quantum 4, 284 (2020) arXiv:1907.07733 DOI
[8]
P. Facchi, G. Florio, G. Parisi, and S. Pascazio, “Maximally multipartite entangled states”, Physical Review A 77, (2008) arXiv:0710.2868 DOI
[9]
P. Facchi, G. Florio, U. Marzolino, G. Parisi, and S. Pascazio, “Classical statistical mechanics approach to multipartite entanglement”, Journal of Physics A: Mathematical and Theoretical 43, 225303 (2010) arXiv:1002.2592 DOI
[10]
A. Ketkar, A. Klappenecker, S. Kumar, and P. K. Sarvepalli, “Nonbinary stabilizer codes over finite fields”, (2005) arXiv:quant-ph/0508070
[11]
M. Grassl and M. Rotteler, “Quantum MDS codes over small fields”, 2015 IEEE International Symposium on Information Theory (ISIT) 1104 (2015) arXiv:1502.05267 DOI
[12]
D. Gottesman, “Stabilizer Codes and Quantum Error Correction”, (1997) arXiv:quant-ph/9705052
[13]
F. Huber, C. Eltschka, J. Siewert, and O. Gühne, “Bounds on absolutely maximally entangled states from shadow inequalities, and the quantum MacWilliams identity”, Journal of Physics A: Mathematical and Theoretical 51, 175301 (2018) arXiv:1708.06298 DOI
[14]
F. Shi, M.-S. Li, L. Chen, and X. Zhang, “k -uniform quantum information masking”, Physical Review A 104, (2021) arXiv:2009.12497 DOI
[15]
Q. Zhao, Y. Zhou, and A. M. Childs, “Entanglement accelerates quantum simulation”, (2024) arXiv:2406.02379
[16]
Z. Raissi, C. Gogolin, A. Riera, and A. Acín, “Optimal quantum error correcting codes from absolutely maximally entangled states”, Journal of Physics A: Mathematical and Theoretical 51, 075301 (2018) arXiv:1701.03359 DOI
[17]
D. Alsina and M. Razavi, “Absolutely maximally entangled states, quantum-maximum-distance-separable codes, and quantum repeaters”, Physical Review A 103, (2021) arXiv:1907.11253 DOI
[18]
M. GRASSL, T. BETH, and M. RÖTTELER, “ON OPTIMAL QUANTUM CODES”, International Journal of Quantum Information 02, 55 (2004) arXiv:quant-ph/0312164 DOI
[19]
D. Goyeneche, D. Alsina, J. I. Latorre, A. Riera, and K. Życzkowski, “Absolutely maximally entangled states, combinatorial designs, and multiunitary matrices”, Physical Review A 92, (2015) arXiv:1506.08857 DOI
[20]
D. Goyeneche, Z. Raissi, S. Di Martino, and K. Życzkowski, “Entanglement and quantum combinatorial designs”, Physical Review A 97, (2018) arXiv:1708.05946 DOI
[21]
A. V. Thapliyal, Multipartite maximally entangled states, minimal entanglement generating states and entropic inequalities unpublished presentation (2003).
[22]
W. Helwig and W. Cui, “Absolutely Maximally Entangled States: Existence and Applications”, (2013) arXiv:1306.2536
[23]
W. Helwig, “Absolutely Maximally Entangled Qudit Graph States”, (2013) arXiv:1306.2879
[24]
D. Alsina, “PhD thesis: Multipartite entanglement and quantum algorithms”, (2017) arXiv:1706.08318
[25]
M. Marcolli, “Holographic Codes on Bruhat--Tits buildings and Drinfeld Symmetric Spaces”, (2018) arXiv:1801.09623
[26]
M. Heydeman, M. Marcolli, S. Parikh, and I. Saberi, “Nonarchimedean Holographic Entropy from Networks of Perfect Tensors”, (2018) arXiv:1812.04057
[27]
W. Helwig, W. Cui, J. I. Latorre, A. Riera, and H.-K. Lo, “Absolute maximal entanglement and quantum secret sharing”, Physical Review A 86, (2012) arXiv:1204.2289 DOI
[28]
C. Ruiz-Gonzalez, S. Arlt, J. Petermann, S. Sayyad, T. Jaouni, E. Karimi, N. Tischler, X. Gu, and M. Krenn, “Digital Discovery of 100 diverse Quantum Experiments with PyTheus”, Quantum 7, 1204 (2023) arXiv:2210.09980 DOI
[29]
Z. Raissi, “Modifying Method of Constructing Quantum Codes From Highly Entangled States”, IEEE Access 8, 222439 (2020) arXiv:2005.01426 DOI
[30]
S. A. Rather, A. Burchardt, W. Bruzda, G. Rajchel-Mieldzioć, A. Lakshminarayan, and K. Życzkowski, “Thirty-six Entangled Officers of Euler: Quantum Solution to a Classically Impossible Problem”, Physical Review Letters 128, (2022) arXiv:2104.05122 DOI
[31]
E. M. Rains, “Nonbinary quantum codes”, (1997) arXiv:quant-ph/9703048
Page edit log

Your contribution is welcome!

on github.com (edit & pull request)— see instructions

edit on this site

Zoo Code ID: ame

Cite as:
“Perfect-tensor code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2024. https://errorcorrectionzoo.org/c/ame
BibTeX:
@incollection{eczoo_ame, title={Perfect-tensor code}, booktitle={The Error Correction Zoo}, year={2024}, editor={Albert, Victor V. and Faist, Philippe}, url={https://errorcorrectionzoo.org/c/ame} }
Share via:
Twitter | Mastodon |  | E-mail
Permanent link:
https://errorcorrectionzoo.org/c/ame

Cite as:

“Perfect-tensor code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2024. https://errorcorrectionzoo.org/c/ame

Github: https://github.com/errorcorrectionzoo/eczoo_data/edit/main/codes/quantum/properties/block/tensor_network/single_tensor/ame.yml.