[Jump to code hierarchy]

Orthogonal array (OA)[13]

Description

An orthogonal array, or OA\(_{\lambda}(t,n,q)\), of strength \(t\) with \(q\) levels and \(n\) constraints is a set of \(q\)-ary strings such that any subset of \(t\) coordinates contains every length-\(t\) string an equal number of times \(\lambda\), which is the index of the array.

Notes

See [4] for a book on orthogonal arrays.

Cousins

Primary Hierarchy

Parents
There is a relation between \(q\)-ary codes and orthogonal arrays which is phrased in terms of the codes' dual distance [13; Thm. 4.5][4; Thm. 4.9].
Orthogonal arrays are designs on Hamming space \(GF(q)^n\) (a.k.a. the Hamming association scheme) [1416][17; Exam. 1]; see also Ref. [18].
Orthogonal array (OA)
Children
Perfect distance-three binary codes of length \(n =2^m-1\) are equivalent to binary orthogonal arrays of strength \(t = 2^{m-1}-1\) [13,19,20].
The extended Golay code is an orthogonal array of strength 7 [17; Exam. 1].
An MDS code is an OA\(_{1}(k,n,q)\) [21; Thm. 3.3.19].

References

[1]
C. R. Rao, Hypercubes of strength d leading to confounded designs in factorial experiments. Bull. Calcutta Math. Soc., 38, 67-78.
[2]
C. R. Rao, “Factorial Experiments Derivable from Combinatorial Arrangements of Arrays”, Supplement to the Journal of the Royal Statistical Society 9, 128 (1947) DOI
[3]
C. R. Rao, “On a Class of Arrangements”, Proceedings of the Edinburgh Mathematical Society 8, 119 (1949) DOI
[4]
A. S. Hedayat, N. J. A. Sloane, and J. Stufken, Orthogonal Arrays (Springer New York, 1999) DOI
[5]
Delsarte, Philippe. "Bounds for unrestricted codes, by linear programming." (1972).
[6]
F. J. MacWilliams and N. J. A. Sloane. The theory of error correcting codes. Elsevier, 1977.
[7]
Combinatorial Designs (Springer-Verlag, 2004) DOI
[8]
Addelman, S., & Kempthorne, O. (1961b). Orthogonal Main-Effect Plans. Technical Report ARL 79, Aeronautical Research Lab., Wright-Patterson Air Force Base, Ohio, Nov. 1961.
[9]
C. R. RAO, “Some Combinatorial Problems of Arrays and Applications to Design of Experiments††Paper read at the International Symposium on Combinatorial Mathematics and its Applications, Fort Collins, Colorado, September 1971.”, A Survey of Combinatorial Theory 349 (1973) DOI
[10]
N. J. A. Sloane and J. Stufken, “A linear programming bound for orthogonal arrays with mixed levels”, Journal of Statistical Planning and Inference 56, 295 (1996) DOI
[11]
D. Goyeneche and K. Życzkowski, “Genuinely multipartite entangled states and orthogonal arrays”, Physical Review A 90, (2014) arXiv:1404.3586 DOI
[12]
D. Goyeneche, Z. Raissi, S. Di Martino, and K. Życzkowski, “Entanglement and quantum combinatorial designs”, Physical Review A 97, (2018) arXiv:1708.05946 DOI
[13]
P. Delsarte, “Four fundamental parameters of a code and their combinatorial significance”, Information and Control 23, 407 (1973) DOI
[14]
Delsarte, Philippe. "An algebraic approach to the association schemes of coding theory." Philips Res. Rep. Suppl. 10 (1973): vi+-97.
[15]
Ph. Delsarte, “Hahn Polynomials, Discrete Harmonics, andt-Designs”, SIAM Journal on Applied Mathematics 34, 157 (1978) DOI
[16]
V. I. Levenshtein, “Universal bounds for codes and designs,” in Handbook of Coding Theory 1, eds. V. S. Pless and W. C. Huffman. Amsterdam: Elsevier, 1998, pp.499-648.
[17]
P. Delsarte and V. I. Levenshtein, “Association schemes and coding theory”, IEEE Transactions on Information Theory 44, 2477 (1998) DOI
[18]
G. Kuperberg, S. Lovett, and R. Peled, “Probabilistic existence of regular combinatorial structures”, (2017) arXiv:1302.4295
[19]
T. Etzion and A. Vardy, “Perfect binary codes: constructions, properties, and enumeration”, IEEE Transactions on Information Theory 40, 754 (1994) DOI
[20]
P. R. J. Ostergard, O. Pottonen, and K. T. Phelps, “The Perfect Binary One-Error-Correcting Codes of Length 15: Part II—Properties”, IEEE Transactions on Information Theory 56, 2571 (2010) arXiv:0903.2749 DOI
[21]
P. R. J. Östergård, "Construction and Classification of Codes." Concise Encyclopedia of Coding Theory (Chapman and Hall/CRC, 2021) DOI
Page edit log

Your contribution is welcome!

on github.com (edit & pull request)— see instructions

edit on this site

Zoo Code ID: orthogonal_array

Cite as:
“Orthogonal array (OA)”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2024. https://errorcorrectionzoo.org/c/orthogonal_array
BibTeX:
@incollection{eczoo_orthogonal_array, title={Orthogonal array (OA)}, booktitle={The Error Correction Zoo}, year={2024}, editor={Albert, Victor V. and Faist, Philippe}, url={https://errorcorrectionzoo.org/c/orthogonal_array} }
Share via:
Twitter | Mastodon |  | E-mail
Permanent link:
https://errorcorrectionzoo.org/c/orthogonal_array

Cite as:

“Orthogonal array (OA)”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2024. https://errorcorrectionzoo.org/c/orthogonal_array

Github: https://github.com/errorcorrectionzoo/eczoo_data/edit/main/codes/classical/q-ary_digits/orthogonal_array.yml.