Orthogonal array (OA)[13] 


An orthogonal array, or OA\(_{\lambda}(t,n,q)\), of strength \(t\) with \(q\) levels and \(n\) constraints is a set of \(q\)-ary strings such that any subset of \(t\) coordinates contains every length-\(t\) string an equal number of times \(\lambda\), which is the index of the array.


See [4] for a book on orthogonal arrays.





C. R. Rao, Hypercubes of strength d leading to confounded designs in factorial experiments. Bull. Calcutta Math. Soc., 38, 67-78.
C. R. Rao, “Factorial Experiments Derivable from Combinatorial Arrangements of Arrays”, Supplement to the Journal of the Royal Statistical Society 9, 128 (1947) DOI
C. R. Rao, “On a Class of Arrangements”, Proceedings of the Edinburgh Mathematical Society 8, 119 (1949) DOI
A. S. Hedayat, N. J. A. Sloane, and J. Stufken, Orthogonal Arrays (Springer New York, 1999) DOI
Delsarte, Philippe. "An algebraic approach to the association schemes of coding theory." Philips Res. Rep. Suppl. 10 (1973): vi+-97.
Ph. Delsarte, “Hahn Polynomials, Discrete Harmonics, andt-Designs”, SIAM Journal on Applied Mathematics 34, 157 (1978) DOI
V. I. Levenshtein, “Universal bounds for codes and designs,” in Handbook of Coding Theory 1, eds. V. S. Pless and W. C. Huffman. Amsterdam: Elsevier, 1998, pp.499-648.
P. Delsarte and V. I. Levenshtein, “Association schemes and coding theory”, IEEE Transactions on Information Theory 44, 2477 (1998) DOI
G. Kuperberg, S. Lovett, and R. Peled, “Probabilistic existence of regular combinatorial structures”, (2017) arXiv:1302.4295
P. Delsarte, “Four fundamental parameters of a code and their combinatorial significance”, Information and Control 23, 407 (1973) DOI
T. Etzion and A. Vardy, “Perfect binary codes: constructions, properties, and enumeration”, IEEE Transactions on Information Theory 40, 754 (1994) DOI
P. R. J. Ostergard, O. Pottonen, and K. T. Phelps, “The Perfect Binary One-Error-Correcting Codes of Length 15: Part II—Properties”, IEEE Transactions on Information Theory 56, 2571 (2010) arXiv:0903.2749 DOI
P. R. J. Östergård, "Construction and Classification of Codes." Concise Encyclopedia of Coding Theory (Chapman and Hall/CRC, 2021) DOI
Delsarte, Philippe. "Bounds for unrestricted codes, by linear programming." (1972).
F. J. MacWilliams and N. J. A. Sloane. The theory of error correcting codes. Elsevier, 1977.
Addelman, S., & Kempthorne, O. (1961b). Orthogonal Main-Effect Plans. Technical Report ARL 79, Aeronautical Research Lab., Wright-Patterson Air Force Base, Ohio, Nov. 1961.
C. R. RAO, “Some Combinatorial Problems of Arrays and Applications to Design of Experiments††Paper read at the International Symposium on Combinatorial Mathematics and its Applications, Fort Collins, Colorado, September 1971.”, A Survey of Combinatorial Theory 349 (1973) DOI
N. J. A. Sloane and J. Stufken, “A linear programming bound for orthogonal arrays with mixed levels”, Journal of Statistical Planning and Inference 56, 295 (1996) DOI
Page edit log

Your contribution is welcome!

on github.com (edit & pull request)— see instructions

edit on this site

Zoo Code ID: orthogonal_array

Cite as:
“Orthogonal array (OA)”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2024. https://errorcorrectionzoo.org/c/orthogonal_array
@incollection{eczoo_orthogonal_array, title={Orthogonal array (OA)}, booktitle={The Error Correction Zoo}, year={2024}, editor={Albert, Victor V. and Faist, Philippe}, url={https://errorcorrectionzoo.org/c/orthogonal_array} }
Share via:
Twitter | Mastodon |  | E-mail
Permanent link:

Cite as:

“Orthogonal array (OA)”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2024. https://errorcorrectionzoo.org/c/orthogonal_array

Github: https://github.com/errorcorrectionzoo/eczoo_data/edit/main/codes/classical/q-ary_digits/orthogonal_array.yml.