\(q\)-ary sharp configuration[1][2][3]

Description

A \(q\)-ary code that admits \(m\) different distances between distinct codewords and forms a design of strength \(2m-1\) or greater.

Parents

Children

Cousins

References

[1]
V. I. Levenshtein, “Designs as maximum codes in polynomial metric spaces”, Acta Applicandae Mathematicae 29, 1 (1992) DOI
[2]
V. I. Levenshtein, 1998. Universal bounds for codes and designs. Handbook of coding theory, 1 (Part 1), pp.499-648.
[3]
H. Cohn and Y. Zhao, “Energy-Minimizing Error-Correcting Codes”, IEEE Transactions on Information Theory 60, 7442 (2014) arXiv:1212.1913 DOI
[4]
W. C. Huffman, J.-L. Kim, and P. Solé, Concise Encyclopedia of Coding Theory (Chapman and Hall/CRC, 2021) DOI
Page edit log

Your contribution is welcome!

on github.com (edit & pull request)

edit on this site

Zoo Code ID: delsarte_optimal_q-ary

Cite as:
\(q\)-ary sharp configuration”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2023. https://errorcorrectionzoo.org/c/delsarte_optimal_q-ary
BibTeX:
@incollection{eczoo_delsarte_optimal_q-ary, title={\(q\)-ary sharp configuration}, booktitle={The Error Correction Zoo}, year={2023}, editor={Albert, Victor V. and Faist, Philippe}, url={https://errorcorrectionzoo.org/c/delsarte_optimal_q-ary} }
Share via:
Twitter | Mastodon |  | E-mail
Permanent link:
https://errorcorrectionzoo.org/c/delsarte_optimal_q-ary

Cite as:

\(q\)-ary sharp configuration”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2023. https://errorcorrectionzoo.org/c/delsarte_optimal_q-ary

Github: https://github.com/errorcorrectionzoo/eczoo_data/tree/main/codes/classical/q-ary_digits/universally_optimal/delsarte_optimal_q-ary.yml.