[Jump to code hierarchy]

\(q\)-ary sharp configuration[13]

Description

A \(q\)-ary code that admits \(m\) different distances between distinct codewords and forms a design of strength \(2m-1\) or greater.

Cousins

Primary Hierarchy

Parents
All \(q\)-ary sharp configurations are universally optimal \(q\)-ary codes [3], but the converse is not true.
\(q\)-ary sharp configuration
Children
The Golay code and two of its shortened versions are \(q\)-ary sharp configurations [4; Table 12.1].
The SPC code is a binary sharp configuration [4; Table 12.1].
The \(q\)-ary repetition code is a \(q\)-ary sharp configuration [4; Table 12.1].
The ternary Golay code and one of its shortened versions are \(q\)-ary sharp configurations [4; Table 12.1].
The ovoid code is a \(q\)-ary sharp configuration [4; Table 12.1].
The Denniston code is a \(q\)-ary sharp configuration [4; Table 12.1].
The \(ED_m\) code is a \(q\)-ary sharp configuration [4; Table 12.1].
The SZZ equidistant code is a \(q\)-ary sharp configuration [4; Table 12.1].

References

[1]
V. I. Levenshtein, “Designs as maximum codes in polynomial metric spaces”, Acta Applicandae Mathematicae 29, 1 (1992) DOI
[2]
V. I. Levenshtein, “Universal bounds for codes and designs,” in Handbook of Coding Theory 1, eds. V. S. Pless and W. C. Huffman. Amsterdam: Elsevier, 1998, pp.499-648.
[3]
H. Cohn and Y. Zhao, “Energy-Minimizing Error-Correcting Codes”, IEEE Transactions on Information Theory 60, 7442 (2014) arXiv:1212.1913 DOI
[4]
P. Boyvalenkov, D. Danev, "Linear programming bounds." Concise Encyclopedia of Coding Theory (Chapman and Hall/CRC, 2021) DOI
Page edit log

Your contribution is welcome!

on github.com (edit & pull request)— see instructions

edit on this site

Zoo Code ID: delsarte_optimal_q-ary

Cite as:
\(q\)-ary sharp configuration”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2023. https://errorcorrectionzoo.org/c/delsarte_optimal_q-ary
BibTeX:
@incollection{eczoo_delsarte_optimal_q-ary, title={\(q\)-ary sharp configuration}, booktitle={The Error Correction Zoo}, year={2023}, editor={Albert, Victor V. and Faist, Philippe}, url={https://errorcorrectionzoo.org/c/delsarte_optimal_q-ary} }
Share via:
Twitter | Mastodon |  | E-mail
Permanent link:
https://errorcorrectionzoo.org/c/delsarte_optimal_q-ary

Cite as:

\(q\)-ary sharp configuration”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2023. https://errorcorrectionzoo.org/c/delsarte_optimal_q-ary

Github: https://github.com/errorcorrectionzoo/eczoo_data/edit/main/codes/classical/q-ary_digits/universally_optimal/delsarte_optimal_q-ary.yml.