Hyperoval code[1]
Description
A projective code constructed using hyperovals in projective space.
Parent
Child
Cousins
- \(q\)-ary sharp configuration — Codes based on hyperovals in \(PG_{2}(q)\) are \(q\)-ary sharp configurations [3; Table 12.1].
- Extended GRS code — Columns of parity-check matrices of triply extended RS codes consist of points of a hyperoval [2; Prop. 17.5].
References
- [1]
- R. C. Bose (1947). Mathematical theory of the symmetrical factorial design. Sankhyā: The Indian Journal of Statistics, 107-166.
- [2]
- J. Bierbrauer, Introduction to Coding Theory (Chapman and Hall/CRC, 2016) DOI
- [3]
- W. C. Huffman, J.-L. Kim, and P. Solé, Concise Encyclopedia of Coding Theory (Chapman and Hall/CRC, 2021) DOI
Page edit log
- Victor V. Albert (2023-03-05) — most recent
- Alexander Barg (2023-03-05)
- Victor V. Albert (2023-02-24)
Cite as:
“Hyperoval code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2023. https://errorcorrectionzoo.org/c/hyperoval