[Jump to code hierarchy]

Extended GRS code

Description

A GRS code with an additional parity-check coordinate with corresponding evaluation point of zero. In other words, an \([n+1,k,n-k+2]_q\) GRS code whose polynomials are evaluated at the points \((\alpha_1,\cdots,\alpha_n,0)\). The case when \(n=q-1\), multipliers \(v_i=1\), and \(\alpha_i\) are \(i-1\)st powers of a primitive \(n\)th root of unity is an extended narrow-sense RS code.

An \([q-1,k,q-k]_q\) narrow-sense RS code can be extended twice by adding two evaluation points (of which one can be zero) to yield a \([q+1,k,q-k+2]_q\) doubly extended narrow-sense RS code. The two extra columns sometimes correspond to evaluating at zero and infinity if one switches to projective coordinates, in which case the doubly extended GRS code is an evaluation code. There also exist triply extended RS codes with parameters \([q+2,3,q-1]_q\) or \([q+2,q-1,4]_q\) [1].

Their automorphism groups have been identified [2].

Notes

See corresponding MinT database entry [3].

Cousins

Primary Hierarchy

Parents
Extended GRS codes can be thought of as GRS codes that include an evaluation point of zero.
GRM codes for univariate polynomials (\(m=1\)) reduce to extended RS codes [8].
Extended GRS code
Children
The hexacode is an extended RS code [9; pg. 82].
The tetracode is an extended RS code [9; pg. 81].

References

[1]
J. Bierbrauer, Introduction to Coding Theory (Chapman and Hall/CRC, 2016) DOI
[2]
A. Dür, “The automorphism groups of Reed-Solomon codes”, Journal of Combinatorial Theory, Series A 44, 69 (1987) DOI
[3]
Rudolf Schürer and Wolfgang Ch. Schmid. “Extended Reed–Solomon Code.” From MinT—the database of optimal net, code, OA, and OOA parameters. Version: 2015-09-03. https://mint.sbg.ac.at/desc_CReedSolomon-extended.html
[4]
W. C. Huffman and V. Pless, Fundamentals of Error-Correcting Codes (Cambridge University Press, 2003) DOI
[5]
S. Ball, “On sets of vectors of a finite vector space in which every subset of basis size is a basis”, Journal of the European Mathematical Society 14, 733 (2012) DOI
[6]
Rudolf Schürer and Wolfgang Ch. Schmid. “Simplex Code.” From MinT—the database of optimal net, code, OA, and OOA parameters. Version: 2015-09-03. https://mint.sbg.ac.at/desc_CSimplex.html
[7]
L. Storme, "Coding Theory and Galois Geometries." Concise Encyclopedia of Coding Theory (Chapman and Hall/CRC, 2021) DOI
[8]
J. B. Little, “Algebraic geometry codes from higher dimensional varieties”, (2008) arXiv:0802.2349
[9]
J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices and Groups (Springer New York, 1999) DOI
Page edit log

Your contribution is welcome!

on github.com (edit & pull request)— see instructions

edit on this site

Zoo Code ID: extended_reed_solomon

Cite as:
“Extended GRS code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/extended_reed_solomon
BibTeX:
@incollection{eczoo_extended_reed_solomon, title={Extended GRS code}, booktitle={The Error Correction Zoo}, year={2022}, editor={Albert, Victor V. and Faist, Philippe}, url={https://errorcorrectionzoo.org/c/extended_reed_solomon} }
Share via:
Twitter | Mastodon |  | E-mail
Permanent link:
https://errorcorrectionzoo.org/c/extended_reed_solomon

Cite as:

“Extended GRS code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/extended_reed_solomon

Github: https://github.com/errorcorrectionzoo/eczoo_data/edit/main/codes/classical/q-ary_digits/ag/reed_solomon/rs/extended_reed_solomon.yml.