[Jump to code hierarchy]

Algebraic-geometry (AG) code[13]

Description

Binary or \(q\)-ary code or subcode constructed from an algebraic curve of some genus over a finite field via the evaluation construction, the residue construction, or more general constructions that yield nonlinear codes. Linear AG codes from the first two constructions are also called geometric Goppa codes.

In alternative conventions (not used here), AG codes are restricted to be linear and/or include evaluation codes defined using algebraic varieties more general than curves.

Rate

Several sequences of linear AG codes beat the GV bound and/or are asymptotically good [46] (see Ref. [7] for details). The rate of any linear AG code satisfies \begin{align} \frac{k}{n} \geq 1 - \frac{d}{n} - \frac{1}{\sqrt{q}-1}~, \tag*{(1)}\end{align} which comes from the Drinfeld-Vladut bound [8]. Nonlinear AG codes can outperform this bound.

Notes

See book by Goppa [9].

Cousins

References

[1]
V. D. Goppa, “Codes Associated with Divisors”, Probl. Peredachi Inf., 13:1 (1977), 33–39; Problems Inform. Transmission, 13:1 (1977), 22–27
[2]
V. D. Goppa, “Codes on algebraic curves”, Dokl. Akad. Nauk SSSR, 259:6 (1981), 1289–1290
[3]
V. D. Goppa, “Algebraico-geometric codes”, Izv. Akad. Nauk SSSR Ser. Mat., 46:4 (1982), 762–781; Izv. Math., 21:1 (1983), 75–91
[4]
M. A. Tsfasman, S. G. Vlădutx, and Th. Zink, “Modular curves, Shimura curves, and Goppa codes, better than Varshamov‐Gilbert bound”, Mathematische Nachrichten 109, 21 (1982) DOI
[5]
A. Garcia and H. Stichtenoth, “A tower of Artin-Schreier extensions of function fields attaining the Drinfeld-Vladut bound”, Inventiones Mathematicae 121, 211 (1995) DOI
[6]
A. Garcia and H. Stichtenoth, “On the Asymptotic Behaviour of Some Towers of Function Fields over Finite Fields”, Journal of Number Theory 61, 248 (1996) DOI
[7]
T. Høholdt, J.H. Van Lint, and R. Pellikaan, 1998. Algebraic geometry codes. Handbook of coding theory, 1 (Part 1), pp.871-961.
[8]
S. G. Vlăduţ, V. G. Drinfeld, “Number of points of an algebraic curve”, Funktsional. Anal. i Prilozhen., 17:1 (1983), 68–69; Funct. Anal. Appl., 17:1 (1983), 53–54
[9]
V. D. Goppa, Geometry and Codes (Springer Netherlands, 1988) DOI
[10]
M. Tsfasman, S. Vlǎduţ, and D. Nogin. Algebraic geometric codes: basic notions. Vol. 139. American Mathematical Society, 2022.
[11]
M. A. Tsfasman and S. G. Vlăduţ, Algebraic-Geometric Codes (Springer Netherlands, 1991) DOI
[12]
I. N. Landjev, “Linear codes over finite fields and finite projective geometries”, Discrete Mathematics 213, 211 (2000) DOI
[13]
L. Sok, “On linear codes with one-dimensional Euclidean hull and their applications to EAQECCs”, (2021) arXiv:2101.06461
Page edit log

Your contribution is welcome!

on github.com (edit & pull request)— see instructions

edit on this site

Zoo Code ID: ag

Cite as:
“Algebraic-geometry (AG) code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2024. https://errorcorrectionzoo.org/c/ag
BibTeX:
@incollection{eczoo_ag, title={Algebraic-geometry (AG) code}, booktitle={The Error Correction Zoo}, year={2024}, editor={Albert, Victor V. and Faist, Philippe}, url={https://errorcorrectionzoo.org/c/ag} }
Share via:
Twitter | Mastodon |  | E-mail
Permanent link:
https://errorcorrectionzoo.org/c/ag

Cite as:

“Algebraic-geometry (AG) code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2024. https://errorcorrectionzoo.org/c/ag

Github: https://github.com/errorcorrectionzoo/eczoo_data/edit/main/codes/classical/q-ary_digits/ag/ag.yml.