Tsfasman-Vladut-Zink (TVZ) code[1] 

Description

Member of a family of residue AG or, more generally, evaluation AG codes where \(\cal X\) is either Drinfeld modular curve, a classic modular curve, or a Garcia-Stichtenoth curve.

Rate

TVZ codes, either in the residue AG or evaluation AG constructions, exceed the asymptotic GV bound [1] (see also Ref. [2]). Roughly speaking, this breakthrough result implies that AG codes can outperform random codes.

Parents

  • Residue AG code — TVZ codes are evaluation AG codes where \(\cal X\) is either a Drinfeld modular curve, a classic modular curve, or a Garcia-Stichtenoth curve, but can also be formulated as residue AG codes.
  • Evaluation AG code — TVZ codes are evaluation AG codes where \(\cal X\) is either a Drinfeld modular curve, a classic modular curve, or a Garcia-Stichtenoth curve, but can also be formulated as residue AG codes.

Cousins

References

[1]
M. A. Tsfasman, S. G. Vlădutx, and Th. Zink, “Modular curves, Shimura curves, and Goppa codes, better than Varshamov‐Gilbert bound”, Mathematische Nachrichten 109, 21 (1982) DOI
[2]
Y. Ihara. "Some remarks on the number of rational points of algebraic curves over finite fields." J. Fac. Sci. Univ. Tokyo Sect. IA Math., 28:721-724 (1982),1981.
[3]
L. Golowich and V. Guruswami, “Asymptotically Good Quantum Codes with Transversal Non-Clifford Gates”, (2024) arXiv:2408.09254
Page edit log

Your contribution is welcome!

on github.com (edit & pull request)— see instructions

edit on this site

Zoo Code ID: shimura

Cite as:
“Tsfasman-Vladut-Zink (TVZ) code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/shimura
BibTeX:
@incollection{eczoo_shimura, title={Tsfasman-Vladut-Zink (TVZ) code}, booktitle={The Error Correction Zoo}, year={2022}, editor={Albert, Victor V. and Faist, Philippe}, url={https://errorcorrectionzoo.org/c/shimura} }
Share via:
Twitter | Mastodon |  | E-mail
Permanent link:
https://errorcorrectionzoo.org/c/shimura

Cite as:

“Tsfasman-Vladut-Zink (TVZ) code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/shimura

Github: https://github.com/errorcorrectionzoo/eczoo_data/edit/main/codes/classical/q-ary_digits/ag/residueAG/shimura.yml.