## Description

Linear \(q\)-ary code defined using a set of points \({\cal P} = \left( P_1,P_2,\cdots,P_n \right)\) in \(GF(q)\) lying on an algebraic curve \(\cal X\) and a linear space \(\Omega\) of certain rational differential forms \(\omega\).

Codewords are evaluations of residues of the differential forms in the specified points, \begin{align} \left(\text{Res}_{P_{1}}(\omega),\text{Res}_{P_{2}}(\omega),\cdots,\text{Res}_{P_{n}}(\omega)\right)\quad\quad\forall\omega\in\Omega~. \tag*{(1)}\end{align} The code is denoted as \(C_{\Omega}({\cal X},{\cal P},D)\), where the divisor \(D\) determines which rational rational differential forms to use.

## Protection

## Realizations

## Parents

- Evaluation AG code — Any residue AG code of differential forms can be equivalently stated as an evaluation AG code of functions [6,7][1; Lemma 15.3.10][5; Thm. 2.72]. In addition, evaluation and residue AG codes are dual to each other [5][1; pg. 313].
- Algebraic-geometry (AG) code

## Children

- Classical Goppa code
- Tsfasman-Vladut-Zink (TVZ) code — TVZ codes are evaluation AG codes where \(\cal X\) is either a Drinfeld modular curve, a classic modular curve, or a Garcia-Stichtenoth curve, but can also be formulated as residue AG codes.

## Cousin

- Cartier code — Every Cartier code is contained in a subfield subcode of a residue AG code. Cartier codes share similar asymptotic properties as subfield subcodes of residue AG codes, with both families admitting sequences of codes that achieve the GV bound.

## References

- [1]
- A. Couvreur, H. Randriambololona, "Algebraic Geometry Codes and Some Applications." Concise Encyclopedia of Coding Theory (Chapman and Hall/CRC, 2021) DOI
- [2]
- A. Couvreur, “The dual minimum distance of arbitrary-dimensional algebraic–geometric codes”, Journal of Algebra 350, 84 (2012) arXiv:0905.2345 DOI
- [3]
- H. Janwa and O. Moreno, Designs, Codes and Cryptography 8, 293 (1996) DOI
- [4]
- H. Chen and R. Cramer, “Algebraic Geometric Secret Sharing Schemes and Secure Multi-Party Computations over Small Fields”, Lecture Notes in Computer Science 521 (2006) DOI
- [5]
- T. Høholdt, J.H. Van Lint, and R. Pellikaan, 1998. Algebraic geometry codes. Handbook of coding theory, 1 (Part 1), pp.871-961.
- [6]
- M. Tsfasman, S. Vlǎduţ, and D. Nogin. Algebraic geometric codes: basic notions. Vol. 139. American Mathematical Society, 2022.
- [7]
- M. A. Tsfasman and S. G. Vlăduţ, Algebraic-Geometric Codes (Springer Netherlands, 1991) DOI

## Page edit log

- Victor V. Albert (2022-08-11) — most recent
- Victor V. Albert (2022-03-21)

## Cite as:

“Residue AG code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/residue