Classical Goppa code[13] 

Description

Let \( G(x) \) be a polynomial describing a projective-plane curve with coefficients from \( GF(q^m) \) for some fixed integer \(m\). Let \( L \) be a finite subset of the extension field \( GF(q^m) \) where \(q\) is prime, meaning \( L = \{\alpha_1, \cdots, \alpha_n\} \) is a subset of nonzero elements of \( GF(q^m) \). A Goppa code \( \Gamma(L,G) \) is an \([n,k,d]_q\) linear code consisting of all vectors \(a = a_1, \cdots, a_n\) such that \( R_a(x) =0 \) modulo \(G(x)\), where \( R_a(x) = \sum_{i=1}^n \frac{a_i}{z - \alpha_i} \).

Goppa codes are residue AG codes [4; Thm. 15.3.28]. Their duals are evaluation codes that are sometimes called geometric Reed Solomon codes [5; Thm. 2.71].

Protection

The length \( n = |L| \) , dimension \( k \geq n-mr \) where \( r = \text{deg} G(x) \), and the minimum distance \( d \geq r +1 \).

Decoding

Algebraic decoding algorithms [6]. If \( \text{deg} G(x) = 2t \) , then there exists a \(t\)-correcting algebraic decoding algorithm for \( \Gamma(L,G) \).Sugiyama et al. modification of the extended Euclidean algorithm [7,8].Guruswami-Sudan list decoder [9].Binary Goppa codes can be decoded using a RS-based decoder [10].

Realizations

Initial version of the McEliece public-key cryptosystem [11,12] and its variation by Niederreiter [13] where the generator matrix is replaced by the parity check matrix. Some of these were proven to be insecure since the public key exposes algebraic structure of code [14].

Notes

GAP function GoppaCode(G,L) takes in a polynomial \(G\) that satisfies the necessary conditions for a Goppa code and a list \(L\) that contains elements in \(GF(q)\) that are not roots of \(G\). It returns a Goppa code.

Parents

  • Generalized RS (GRS) code — Goppa codes are \(GF(q)\)-subfield subcode of the dual of the GRS code over \(GF(q^m)\) with evaluation points \(\alpha_i\) and factors \(v_i=G(\alpha_i)^{-1}\) ([15], pg. 523; [5]).
  • Cartier code — Goppa codes are Cartier codes from a curve of genus zero [16].

Cousins

References

[1]
V. D. Goppa, "A new class of linear error-correcting codes", Probl. Peredach. Inform., vol. 6, no. 3, pp. 24-30, Sept. 1970.
[2]
V. D. Goppa, "Rational representation of codes and (Lg) codes", Probl. Peredach. Inform., vol. 7, no. 3, pp. 41-49, Sept. 1971.
[3]
E. Berlekamp, “Goppa codes”, IEEE Transactions on Information Theory 19, 590 (1973) DOI
[4]
A. Couvreur, H. Randriambololona, "Algebraic Geometry Codes and Some Applications." Concise Encyclopedia of Coding Theory (Chapman and Hall/CRC, 2021) DOI
[5]
T. Høholdt, J.H. Van Lint, and R. Pellikaan, 1998. Algebraic geometry codes. Handbook of coding theory, 1 (Part 1), pp.871-961.
[6]
N. Patterson, “The algebraic decoding of Goppa codes”, IEEE Transactions on Information Theory 21, 203 (1975) DOI
[7]
Y. Sugiyama et al., “A method for solving key equation for decoding goppa codes”, Information and Control 27, 87 (1975) DOI
[8]
R. McEliece, The Theory of Information and Coding (Cambridge University Press, 2002) DOI
[9]
V. Guruswami and M. Sudan, “Improved decoding of Reed-Solomon and algebraic-geometric codes”, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280) DOI
[10]
Daniel J. Bernstein, "Understanding binary-Goppa decoding." Cryptology ePrint Archive (2022).
[11]
R. J. McEliece, A public-key cryptosystem based on algebraic coding theory, Technical report, Jet Propulsion Lab. DSN Progress Report (1978).
[12]
H. Janwa and O. Moreno, “McEliece public key cryptosystems using algebraic-geometric codes”, Designs, Codes and Cryptography 8, (1996) DOI
[13]
H. Niederreiter (1986). Knapsack-type cryptosystems and algebraic coding theory. Problems of Control and Information Theory. Problemy Upravlenija I Teorii Informacii. 15: 159–166.
[14]
V. M. SIDELNIKOV and S. O. SHESTAKOV, “On insecurity of cryptosystems based on generalized Reed-Solomon codes”, Discrete Mathematics and Applications 2, (1992) DOI
[15]
W. C. Huffman and V. Pless, Fundamentals of Error-Correcting Codes (Cambridge University Press, 2003) DOI
[16]
A. Couvreur, “Codes and the Cartier Operator”, (2012) arXiv:1206.4728
[17]
T. Kaufman and S. Litsyn, “Almost Orthogonal Linear Codes are Locally Testable”, 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS’05) DOI
Page edit log

Your contribution is welcome!

on github.com (edit & pull request)

edit on this site

Zoo Code ID: goppa

Cite as:
“Classical Goppa code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/goppa
BibTeX:
@incollection{eczoo_goppa,
  title={Classical Goppa code},
  booktitle={The Error Correction Zoo},
  year={2022},
  editor={Albert, Victor V. and Faist, Philippe},
  url={https://errorcorrectionzoo.org/c/goppa}
}
Share via:
Twitter | Mastodon |  | E-mail
Permanent link:
https://errorcorrectionzoo.org/c/goppa

Cite as:

“Classical Goppa code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/goppa

Github: https://github.com/errorcorrectionzoo/eczoo_data/tree/main/codes/classical/q-ary_digits/ag/residueAG/goppa.yml.