Srivastava code[1,2] 

Description

A special case of a generalized Srivastava code for \(z_j = \alpha_j^{\mu}\) for some \(\mu\) and \(t=1\).

The code's parity-check matrix is \begin{align} H=\begin{pmatrix}\frac{\alpha_{1}^{\mu}}{\alpha_{1}-w_{1}} & \frac{\alpha_{2}^{\mu}}{\alpha_{2}-w_{1}} & \cdots & \frac{\alpha_{n}^{\mu}}{\alpha_{n}-w_{1}}\\ \frac{\alpha_{1}^{\mu}}{\alpha_{1}-w_{2}} & \frac{\alpha_{2}^{\mu}}{\alpha_{1}-w_{2}} & \cdots & \frac{\alpha_{n}^{\mu}}{\alpha_{n}-w_{2}}\\ \vdots & \vdots & \ddots & \vdots\\ \frac{\alpha_{1}^{\mu}}{\alpha_{1}-w_{s}} & \frac{\alpha_{2}^{\mu}}{\alpha_{2}-w_{s}} & \cdots & \frac{\alpha_{n}^{\mu}}{\alpha_{n}-w_{s}} \end{pmatrix}~. \tag*{(1)}\end{align}

Protection

Dimension and minimum distance are found in Refs. [2,3].

Parents

References

[1]
E. R. Berlekamp, Algebraic Coding Theory (WORLD SCIENTIFIC, 2014) DOI
[2]
H. Helgert, “Srivastava codes”, IEEE Transactions on Information Theory 18, 292 (1972) DOI
[3]
H. J. Helgert, “Noncyclic generalizations of BCH and srivastava codes”, Information and Control 21, 280 (1972) DOI
[4]
F. J. MacWilliams and N. J. A. Sloane. The theory of error correcting codes. Elsevier, 1977.
Page edit log

Your contribution is welcome!

on github.com (edit & pull request)— see instructions

edit on this site

Zoo Code ID: srivastava

Cite as:
“Srivastava code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2024. https://errorcorrectionzoo.org/c/srivastava
BibTeX:
@incollection{eczoo_srivastava, title={Srivastava code}, booktitle={The Error Correction Zoo}, year={2024}, editor={Albert, Victor V. and Faist, Philippe}, url={https://errorcorrectionzoo.org/c/srivastava} }
Share via:
Twitter | Mastodon |  | E-mail
Permanent link:
https://errorcorrectionzoo.org/c/srivastava

Cite as:

“Srivastava code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2024. https://errorcorrectionzoo.org/c/srivastava

Github: https://github.com/errorcorrectionzoo/eczoo_data/edit/main/codes/classical/q-ary_digits/alternant/srivastava.yml.