Description
A special case of a generalized Srivastava code for \(z_j = \alpha_j^{\mu}\) for some \(\mu\) and \(t=1\).
The code's parity-check matrix is \begin{align} H=\begin{pmatrix}\frac{\alpha_{1}^{\mu}}{\alpha_{1}-w_{1}} & \frac{\alpha_{2}^{\mu}}{\alpha_{2}-w_{1}} & \cdots & \frac{\alpha_{n}^{\mu}}{\alpha_{n}-w_{1}}\\ \frac{\alpha_{1}^{\mu}}{\alpha_{1}-w_{2}} & \frac{\alpha_{2}^{\mu}}{\alpha_{1}-w_{2}} & \cdots & \frac{\alpha_{n}^{\mu}}{\alpha_{n}-w_{2}}\\ \vdots & \vdots & \ddots & \vdots\\ \frac{\alpha_{1}^{\mu}}{\alpha_{1}-w_{s}} & \frac{\alpha_{2}^{\mu}}{\alpha_{2}-w_{s}} & \cdots & \frac{\alpha_{n}^{\mu}}{\alpha_{n}-w_{s}} \end{pmatrix}~. \tag*{(1)}\end{align}
Member of code lists
Primary Hierarchy
References
- [1]
- E. R. Berlekamp, Algebraic Coding Theory (WORLD SCIENTIFIC, 2014) DOI
- [2]
- H. Helgert, “Srivastava codes”, IEEE Transactions on Information Theory 18, 292 (1972) DOI
- [3]
- H. J. Helgert, “Noncyclic generalizations of BCH and srivastava codes”, Information and Control 21, 280 (1972) DOI
- [4]
- F. J. MacWilliams and N. J. A. Sloane. The theory of error correcting codes. Elsevier, 1977.
Page edit log
- Victor V. Albert (2024-08-18) — most recent
Cite as:
“Srivastava code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2024. https://errorcorrectionzoo.org/c/srivastava