Description
Given a length-\(n\) GRS code \(C\) over \(GF(q^m)\), an alternant code is the \(GF(q)\)-subfield subcode of the dual of \(C\); see [5; Ch. 12]. Its parity-check matrix is an alternant matrix.Decoding
Variation of the Berlekamp-Welch algorithm [6].Euclidean algorithm; see [5; Ch. 12] for more details.Guruswami-Sudan list decoder [7,8].Notes
See [5; Ch. 12] for more details.Cousins
- Generalized RS (GRS) code— Alternant codes are subfield subcodes of GRS codes [4].
- Berlekamp code— Berlekamp codes reduce to narrow-sense alternant codes for \(p=2\) [9; Ch. 10.6].
- Qubit CSS code— Alternant codes used in the CSS construction yield quantum codes that asymptotically achieve the quantum GV bound [10].
Member of code lists
Primary Hierarchy
Parents
Alternant code
Children
Goppa codes are a special case of alternant codes [5; Ch. 12].
GBCH codes are a special case of alternant codes [5; Ch. 12].
Generalized Srivastava codes are a special case of alternant codes [5; Ch. 12].
References
- [1]
- H. J. Helgert, “Noncyclic generalizations of BCH and srivastava codes”, Information and Control 21, 280 (1972) DOI
- [2]
- H. J. Helgert, “Alternant codes”, Information and Control 26, 369 (1974) DOI
- [3]
- H. J. Helgert, “Binary primitive alternant codes”, Information and Control 27, 101 (1975) DOI
- [4]
- P. Delsarte, “On subfield subcodes of modified Reed-Solomon codes (Corresp.)”, IEEE Transactions on Information Theory 21, 575 (1975) DOI
- [5]
- F. J. MacWilliams and N. J. A. Sloane. The theory of error correcting codes. Elsevier, 1977.
- [6]
- H. Helgert, “Decoding of alternant codes (Corresp.)”, IEEE Transactions on Information Theory 23, 513 (1977) DOI
- [7]
- V. Guruswami and M. Sudan, “Improved decoding of Reed-Solomon and algebraic-geometry codes”, IEEE Transactions on Information Theory 45, 1757 (1999) DOI
- [8]
- V. Guruswami and M. Sudan, “Improved decoding of Reed-Solomon and algebraic-geometric codes”, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280) 28 DOI
- [9]
- R. Roth, Introduction to Coding Theory (Cambridge University Press, 2006) DOI
- [10]
- J. Fan, J. Li, Y. Wang, Y. Li, M.-H. Hsieh, and J. Du, “Partially Concatenated Calderbank-Shor-Steane Codes Achieving the Quantum Gilbert-Varshamov Bound Asymptotically”, IEEE Transactions on Information Theory 69, 262 (2023) DOI
Page edit log
- Victor V. Albert (2022-01-02) — most recent
- Khalil Guy (2022-01-02)
- Victor V. Albert (2022-03-24)
- Manasi Shingane (2021-12-05)
Cite as:
“Alternant code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/alternant