Alternant code[1]
Description
Given a length-\(n\) GRS code \(C\) over \(GF(q^m)\), an alternant code is the \(GF(q)\)-subfield subcode of the dual of \(C\).
Decoding
Notes
See [4; Ch. 12] for more details.
Parent
- Generalized RS (GRS) code — Alternant codes are subfield subcodes of GRS codes.
Cousin
- Qubit CSS code — Alternant codes used in the CSS construction yield quantum codes that asymptotically achieve the quantum Gilbert-Varshamov bound [5].
References
- [1]
- H. J. Helgert, “Alternant codes”, Information and Control 26, 369 (1974) DOI
- [2]
- H. Helgert, “Decoding of alternant codes (Corresp.)”, IEEE Transactions on Information Theory 23, 513 (1977) DOI
- [3]
- V. Guruswami and M. Sudan, “Improved decoding of Reed-Solomon and algebraic-geometric codes”, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280) DOI
- [4]
- F. J. MacWilliams and N. J. A. Sloane. The theory of error correcting codes. Elsevier, 1977.
- [5]
- J. Fan et al., “Partially Concatenated Calderbank-Shor-Steane Codes Achieving the Quantum Gilbert-Varshamov Bound Asymptotically”, IEEE Transactions on Information Theory 1 (2022) DOI
Page edit log
- Victor V. Albert (2022-01-02) — most recent
- Khalil Guy (2022-01-02)
- Victor V. Albert (2022-03-24)
- Manasi Shingane (2021-12-05)
Cite as:
“Alternant code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/alternant