Chien-Choy generalized BCH (GBCH) code[1] 

Description

An \([n,k\geq n-rm, d\geq r+1]_q\) alternant code defined using two polynomials \(P(x),G(x)\) that are relatively prime to \(x^n-1\), with \(\deg P \leq n-1\) and \(r = \deg G \leq n-1\).

See [2; Ch. 12] for the parity-check matrix.

Parent

Children

References

[1]
R. Chien and D. Choy, “Algebraic generalization of BCH-Goppa-Helgert codes”, IEEE Transactions on Information Theory 21, 70 (1975) DOI
[2]
F. J. MacWilliams and N. J. A. Sloane. The theory of error correcting codes. Elsevier, 1977.
Page edit log

Your contribution is welcome!

on github.com (edit & pull request)— see instructions

edit on this site

Zoo Code ID: gbch

Cite as:
“Chien-Choy generalized BCH (GBCH) code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2024. https://errorcorrectionzoo.org/c/gbch
BibTeX:
@incollection{eczoo_gbch, title={Chien-Choy generalized BCH (GBCH) code}, booktitle={The Error Correction Zoo}, year={2024}, editor={Albert, Victor V. and Faist, Philippe}, url={https://errorcorrectionzoo.org/c/gbch} }
Share via:
Twitter | Mastodon |  | E-mail
Permanent link:
https://errorcorrectionzoo.org/c/gbch

Cite as:

“Chien-Choy generalized BCH (GBCH) code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2024. https://errorcorrectionzoo.org/c/gbch

Github: https://github.com/errorcorrectionzoo/eczoo_data/edit/main/codes/classical/q-ary_digits/alternant/bch/gbch.yml.