Generalized Srivastava code[1]
Description
An \([n,k \geq n-mst,d \geq st+1 ]_q\) alternant code defined for \(n+s\) distinct elements \(\alpha_1,\alpha_2,\cdots,\alpha_n,w_1,w_2,\cdots,w_s\) and \(n\) nonzero elements \(z_1,z_2,\cdots,z_n\) of \(GF(q^m)\).
The code's parity-check matrix is [2; Ch. 12] \begin{align} H=\begin{pmatrix}\frac{z_{1}}{\alpha_{1}-w_{1}} & \frac{z_{2}}{\alpha_{2}-w_{1}} & \cdots & \frac{z_{n}}{\alpha_{n}-w_{1}}\\ \frac{z_{1}}{\left(\alpha_{1}-w_{2}\right)^{2}} & \frac{z_{2}}{\left(\alpha_{1}-w_{2}\right)^{2}} & \cdots & \frac{z_{n}}{\left(\alpha_{n}-w_{2}\right)^{2}}\\ \vdots & \vdots & \ddots & \vdots\\ \frac{z_{1}}{\left(\alpha_{1}-w_{s}\right)^{t}} & \frac{z_{2}}{\left(\alpha_{2}-w_{s}\right)^{t}} & \cdots & \frac{z_{n}}{\left(\alpha_{n}-w_{s}\right)^{t}} \end{pmatrix}~. \tag*{(1)}\end{align}
Cousins
- Gabidulin code— Generalized Srivastava codes for \(m=1\) are equivalent to Gabidulin codes [2; pg. 359].
- Maximum distance separable (MDS) code— Generalized Srivastava codes for \(m=1\) are MDS codes [2; pg. 359].
Member of code lists
Primary Hierarchy
References
- [1]
- H. Helgert, “Srivastava codes”, IEEE Transactions on Information Theory 18, 292 (1972) DOI
- [2]
- F. J. MacWilliams and N. J. A. Sloane. The theory of error correcting codes. Elsevier, 1977.
Page edit log
- Victor V. Albert (2024-08-18) — most recent
Cite as:
“Generalized Srivastava code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2024. https://errorcorrectionzoo.org/c/generalized_srivastava