[Jump to code hierarchy]

Nonlinear AG code[15]

Description

Nonlinear \(q\)-ary code constructed by evaluating functions on an algebraic curve.

Rate

Certain nonlinear code sequences beat the Tsfasman-Vladut-Zink bound, outperforming linear AG codes.

References

[1]
N. D. Elkies, “Excellent nonlinear codes from modular curves”, (2001) arXiv:math/0104115
[2]
Chaoping Xing, “Nonlinear codes from algebraic curves improving the Tsfasman-Vladut-Zink bound”, IEEE Transactions on Information Theory 49, 1653 (2003) DOI
[3]
N. D. Elkies, “Still better nonlinear codes from modular curves”, (2003) arXiv:math/0308046
[4]
H. Niederreiter and F. Özbudak, “Constructive Asymptotic Codes with an Improvement on the Tsfasman-Vlăduţ-Zink and Xing Bounds”, Coding, Cryptography and Combinatorics 259 (2004) DOI
[5]
H. Stichtenoth and C. Xing, “Excellent Nonlinear Codes From Algebraic Function Fields”, IEEE Transactions on Information Theory 51, 4044 (2005) DOI
Page edit log

Your contribution is welcome!

on github.com (edit & pull request)— see instructions

edit on this site

Zoo Code ID: nonlinear_ag

Cite as:
“Nonlinear AG code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/nonlinear_ag
BibTeX:
@incollection{eczoo_nonlinear_ag, title={Nonlinear AG code}, booktitle={The Error Correction Zoo}, year={2022}, editor={Albert, Victor V. and Faist, Philippe}, url={https://errorcorrectionzoo.org/c/nonlinear_ag} }
Share via:
Twitter | Mastodon |  | E-mail
Permanent link:
https://errorcorrectionzoo.org/c/nonlinear_ag

Cite as:

“Nonlinear AG code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/nonlinear_ag

Github: https://github.com/errorcorrectionzoo/eczoo_data/edit/main/codes/classical/q-ary_digits/ag/nonlinear_ag.yml.