Description
Reed-Muller code GRM\(_q(r,m)\) of length \(n=q^m\) over \(\mathbb{F}_q\) with \(0\leq r\leq m(q-1)\). Its codewords are evaluations of the set of all degree-\(\leq r\) polynomials in \(m\) variables at the points of \(\mathbb{F}_q\).
Since \(\beta^q=\beta\) for any \(\beta\in \mathbb{F}_q\), the above definition is not injective. Replacing each factor in each polynomial as \(x^q\to x\), the above set reduces to the set of all degree-\(\leq r\) polynomials in \(m\) variables such that no term has an exponent \(q\) or higher on any variable.
Its automorphism group is the general affine group \(GA(m,\mathbb{F}_q)\) [4]. Any nontrivial \(q\)-ary linear code invariant under this group is equivalent to a GRM code [5].
Rate
GRM codes achieve capacity on sufficiently symmetric non-binary channels [8].Cousins
- Group-algebra code— GRM codes over prime-power fields are group-algebra codes [12–14][15; Exam. 16.4.11].
 - Cyclic linear \(q\)-ary code— GRM codes with nonzero evaluation points are cyclic [7; pg. 52].
 - \(q\)-ary linear LTC— GRM codes for \(r<q\) can be LTCs in the low- [16,17] and high-error [18,19] regimes. They admit weakly stable presentations of their corresponding groups [20].
 - Difference-set cyclic (DSC) code— DSC codes can be subfield subcodes of GRM codes, and visa versa [21; Thm. 6.14].
 - Finite-geometry LDPC (FG-LDPC) code— Some EG-LDPC codes are duals of subfield subcodes of GRM codes [22; pg. 448].
 - Batch code— GRM codes can be used to construct batch codes [23].
 - \(q\)-ary Hamming code— \(q\)-ary Hamming codes are dual to first-order GRM codes [7; pg. 45].
 - Quantum convolutional code— GRM codes can be used to construct quantum convolutional codes [24–26].
 - Galois-qudit quantum RM code— Generalized RM codes can be used to construct Galois-qudit RM codes.
 - Galois-qudit expander code— Expander codes with RS inner codes contain GRM codewords because tensor products of univariate polynomials (corresponding to RS codewords) yield multivariate polynomials (corresponding to GRM codewords) [27].
 
Primary Hierarchy
References
- [1]
 - T. Kasami, Shu Lin, and W. Peterson, “New generalizations of the Reed-Muller codes–I: Primitive codes”, IEEE Transactions on Information Theory 14, 189 (1968) DOI
 - [2]
 - E. Weldon, “New generalizations of the Reed-Muller codes–II: Nonprimitive codes”, IEEE Transactions on Information Theory 14, 199 (1968) DOI
 - [3]
 - P. Delsarte, J. M. Goethals, and F. J. Mac Williams, “On generalized ReedMuller codes and their relatives”, Information and Control 16, 403 (1970) DOI
 - [4]
 - T. Berger and P. Charpin, “The automorphism group of Generalized Reed-Muller codes”, Discrete Mathematics 117, 1 (1993) DOI
 - [5]
 - P. Delsarte, “On cyclic codes that are invariant under the general linear group”, IEEE Transactions on Information Theory 16, 760 (1970) DOI
 - [6]
 - M. Tsfasman, S. Vlǎduţ, and D. Nogin. Algebraic geometric codes: basic notions. Vol. 139. American Mathematical Society, 2022.
 - [7]
 - M. A. Tsfasman and S. G. Vlăduţ, Algebraic-Geometric Codes (Springer Netherlands, 1991) DOI
 - [8]
 - G. Reeves and H. D. Pfister, “Achieving Capacity on Non-Binary Channels with Generalized Reed-Muller Codes”, (2023) arXiv:2305.07779
 - [9]
 - E. F. Assmus and J. D. Key, Designs and Their Codes (Cambridge University Press, 1992) DOI
 - [10]
 - W. C. Huffman and V. Pless, Fundamentals of Error-Correcting Codes (Cambridge University Press, 2003) DOI
 - [11]
 - E. F. Assmus, Jr. and J. D. Key, “Polynomial codes and finite geometries,” in Handbook of Coding Theory, eds. V. S. Pless and W. C. Huffman. Amsterdam: Elsevier, 1998, pp. 1269–1343.
 - [12]
 - S. D. Berman, “On the theory of group codes”, Cybernetics 3, 25 (1969) DOI
 - [13]
 - Charpin, Pascale. Codes idéaux de certaines algèbres modulaires. Diss. 1982.
 - [14]
 - P. Landrock and O. Manz, “Classical codes as ideals in group algebras”, Designs, Codes and Cryptography 2, 273 (1992) DOI
 - [15]
 - W. Willems, “Codes in Group Algebras.” Concise Encyclopedia of Coding Theory (Chapman and Hall/CRC, 2021) DOI
 - [16]
 - L. Babai, L. Fortnow, L. A. Levin, and M. Szegedy, “Checking computations in polylogarithmic time”, Proceedings of the twenty-third annual ACM symposium on Theory of computing - STOC ’91 21 (1991) DOI
 - [17]
 - S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy, “Proof verification and the hardness of approximation problems”, Journal of the ACM 45, 501 (1998) DOI
 - [18]
 - R. Raz and S. Safra, “A sub-constant error-probability low-degree test, and a sub-constant error-probability PCP characterization of NP”, Proceedings of the twenty-ninth annual ACM symposium on Theory of computing - STOC ’97 475 (1997) DOI
 - [19]
 - S. Arora and M. Sudan, “Improved low-degree testing and its applications”, Proceedings of the twenty-ninth annual ACM symposium on Theory of computing - STOC ’97 485 (1997) DOI
 - [20]
 - M. Chapman, T. Vidick, and H. Yuen, “Efficiently stable presentations from error-correcting codes”, (2023) arXiv:2311.04681
 - [21]
 - C. Ding, Codes from Difference Sets (WORLD SCIENTIFIC, 2014) DOI
 - [22]
 - R. E. Blahut, Algebraic Codes for Data Transmission (Cambridge University Press, 2003) DOI
 - [23]
 - T. Baumbaugh, Y. Diaz, S. Friesenhahn, F. Manganiello, and A. Vetter, “Batch Codes from Hamming and Reed-Müller Codes”, (2017) arXiv:1710.07386
 - [24]
 - S. A. Aly, A. Klappenecker, and P. K. Sarvepalli, “On Quantum and Classical BCH Codes”, (2006) arXiv:quant-ph/0604102
 - [25]
 - S. A. Aly, “On Quantum and Classical Error Control Codes: Constructions and Applications”, (2008) arXiv:0812.5104
 - [26]
 - “Nonbinary Stabilizer Codes”, Mathematics of Quantum Computation and Quantum Technology 305 (2007) DOI
 - [27]
 - L. Golowich and T.-C. Lin, “Quantum LDPC Codes with Transversal Non-Clifford Gates via Products of Algebraic Codes”, (2024) arXiv:2410.14662
 - [28]
 - S. G. Vléduts and Yu. I. Manin, “Linear codes and modular curves”, Journal of Soviet Mathematics 30, 2611 (1985) DOI
 - [29]
 - T. Høholdt, J.H. Van Lint, and R. Pellikaan, 1998. Algebraic geometry codes. Handbook of coding theory, 1 (Part 1), pp.871-961.
 - [30]
 - T. Blackmore and G. H. Norton, “Matrix-Product Codes over ? q”, Applicable Algebra in Engineering, Communication and Computing 12, 477 (2001) DOI
 - [31]
 - S. Yekhanin, “Locally Decodable Codes”, Foundations and Trends® in Theoretical Computer Science 6, 139 (2012) DOI
 - [32]
 - Gopi, Sivakanth. Locality in coding theory. Diss. Princeton University, 2018.
 - [33]
 - J. B. Little, “Algebraic geometry codes from higher dimensional varieties”, (2008) arXiv:0802.2349
 
Page edit log
- Victor V. Albert (2022-07-20) — most recent
 
Cite as:
“Generalized RM (GRM) code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/generalized_reed_muller