[Jump to code hierarchy]

Matrix-product code[1]

Description

Code constructed using a concatenation procedure that yields a code consisting of all products of codewords in \(M\) length-\(n\) \(q\)-ary codes and an \(M\times N\) \(q\)-ary matrix with \(N\geq M\). A prominent subclass is the case with \(A\) is non-singular by columns (NSC).

Decoding

Decoder up to half of the minimum distance for NSC codes [2].

Cousin

  • Hermitian Galois-qudit code— Hermitian self-orthogonal matrix-product codes over \(GF(q^2)\) can be used to construct quantum codes via the Hermitian construction [3,4].

Primary Hierarchy

Parents
Matrix-product code
Children
Applying a special case of the matrix-product procedure yields GRM codes [1].

References

[1]
T. Blackmore and G. H. Norton, “Matrix-Product Codes over ? q”, Applicable Algebra in Engineering, Communication and Computing 12, 477 (2001) DOI
[2]
F. Hernando, K. Lally, and D. Ruano, “Construction and decoding of matrix-product codes from nested codes”, Applicable Algebra in Engineering, Communication and Computing 20, 497 (2009) DOI
[3]
M. Cao and J. Cui, “Construction of new quantum codes via Hermitian dual-containing matrix-product codes”, Quantum Information Processing 19, (2020) DOI
[4]
X. Liu, H. Liu, and L. Yu, “On New Quantum Codes From Matrix Product Codes”, (2021) arXiv:1604.05823
Page edit log

Your contribution is welcome!

on github.com (edit & pull request)— see instructions

edit on this site

Zoo Code ID: matrix_product

Cite as:
“Matrix-product code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/matrix_product
BibTeX:
@incollection{eczoo_matrix_product, title={Matrix-product code}, booktitle={The Error Correction Zoo}, year={2022}, editor={Albert, Victor V. and Faist, Philippe}, url={https://errorcorrectionzoo.org/c/matrix_product} }
Share via:
Twitter | Mastodon |  | E-mail
Permanent link:
https://errorcorrectionzoo.org/c/matrix_product

Cite as:

“Matrix-product code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/matrix_product

Github: https://github.com/errorcorrectionzoo/eczoo_data/edit/main/codes/classical/q-ary_digits/matrix_product.yml.