Hermitian Galois-qudit code[13] 

Also known as \(GF(q^2)\)-linear code.

Description

An \([[n,k,d]]_q\) true Galois-qudit stabilizer code constructed from a Hermitian self-orthogonal linear code over \(GF(q^2)\) using the one-to-one correspondence between the Galois-qudit Pauli matrices and elements of the Galois field \(GF(q^2)\).

Galois-qudit stabilizer codes are in one-to-one correspondence with trace-alternating self-orthogonal additive codes of length \(n\) over \(GF(q^2)\) via the \(GF(q^2)\) representation. Hermitian self-orthogonal linear codes over \(GF(q^2)\) are automatically trace-alternating self-orthogonal, and applying this mapping to such codes yields Hermitian codes [3; Corr. 19].

Protection

A Hermitian self-orthogonal linear \([n,k,d]_{q^2}\) code yields an \([[n,n-2k]]_q\) true stabilizer code with distance no less than \(d\); this is called the Hermitian construction.

The Hermitian construction was first proven via the symplectic representation (showing self-orthogonality under the trace-symplectic inner product; see Ref. [2], Corr. 1). There is an isomorphism between the symplectic and \(GF(q^2)\) representations [4; Thm. 27.3.8].

It has also been extended to \(q^{2m}\)-ary Hermitian self-orthogonal linear codes [5], and similar constructions were formulated in Ref. [6]. Construction X and XX have also been adapted to yield quantum codes [7,8].

Parent

  • True Galois-qudit stabilizer code — Hermitian codes are true stabilizer codes because they are based on Hermitian self-orthogonal linear (as opposed to additive) codes over \(GF(q^2)\).

Children

Cousins

References

[1]
J. Bierbrauer and Y. Edel, “Quantum twisted codes”, Journal of Combinatorial Designs 8, 174 (2000) DOI
[2]
A. Ashikhmin and E. Knill, “Nonbinary quantum stabilizer codes”, IEEE Transactions on Information Theory 47, 3065 (2001) DOI
[3]
A. Ketkar et al., “Nonbinary stabilizer codes over finite fields”, (2005) arXiv:quant-ph/0508070
[4]
M. F. Ezerman, "Quantum Error-Control Codes." Concise Encyclopedia of Coding Theory (Chapman and Hall/CRC, 2021) DOI
[5]
C. Galindo and F. Hernando, “On the generalization of the construction of quantum codes from Hermitian self-orthogonal codes”, Designs, Codes and Cryptography 90, 1103 (2022) arXiv:2012.11998 DOI
[6]
M. F. Ezerman, S. Ling, and P. Sole, “Additive Asymmetric Quantum Codes”, IEEE Transactions on Information Theory 57, 5536 (2011) arXiv:1002.4088 DOI
[7]
P. Lisoněk and V. Singh, “Quantum codes from nearly self-orthogonal quaternary linear codes”, Designs, Codes and Cryptography 73, 417 (2014) DOI
[8]
M. F. Ezerman et al., “Characterization of Nearly Self-Orthogonal Quasi-Twisted Codes and Related Quantum Codes”, (2024) arXiv:2405.15057
[9]
M. Cao and J. Cui, “Construction of new quantum codes via Hermitian dual-containing matrix-product codes”, Quantum Information Processing 19, (2020) DOI
[10]
X. Liu, H. Liu, and L. Yu, “On New Quantum Codes From Matrix Product Codes”, (2021) arXiv:1604.05823
[11]
S. A. Aly, A. Klappenecker, and P. K. Sarvepalli, “Subsystem Codes”, (2006) arXiv:quant-ph/0610153
[12]
R. Egan, “A survey of complex generalized weighing matrices and a construction of quantum error-correcting codes”, (2023) arXiv:2309.07522
[13]
B. Sarac and D. Acar, “A Construction of Quantum Stabilizer Codes from Classical Codes and Butson Hadamard Matrices”, (2024) arXiv:2407.13527
[14]
M. GRASSL, T. BETH, and M. RÖTTELER, “ON OPTIMAL QUANTUM CODES”, International Journal of Quantum Information 02, 55 (2004) arXiv:quant-ph/0312164 DOI
[15]
R. Li and Z. Xu, “Construction of[[n,n−4,3]]qquantum codes for odd prime powerq”, Physical Review A 82, (2010) arXiv:0906.2509 DOI
[16]
X. He, L. Xu, and H. Chen, “New \(q\)-ary Quantum MDS Codes with Distances Bigger than \(\frac{q}{2}\)”, (2015) arXiv:1507.08355
[17]
L. Lu et al., “New Quantum MDS codes constructed from Constacyclic codes”, (2018) arXiv:1803.07927
[18]
G. G. La Guardia, “New Quantum MDS Codes”, IEEE Transactions on Information Theory 57, 5551 (2011) DOI
[19]
X. Kai, S. Zhu, and P. Li, “Constacyclic Codes and Some New Quantum MDS Codes”, IEEE Transactions on Information Theory 60, 2080 (2014) DOI
[20]
B. Chen, S. Ling, and G. Zhang, “Application of Constacyclic Codes to Quantum MDS Codes”, IEEE Transactions on Information Theory 61, 1474 (2015) DOI
[21]
X. Kai and S. Zhu, “New Quantum MDS Codes From Negacyclic Codes”, IEEE Transactions on Information Theory 59, 1193 (2013) DOI
Page edit log

Your contribution is welcome!

on github.com (edit & pull request)— see instructions

edit on this site

Zoo Code ID: stabilizer_over_gfqsq

Cite as:
“Hermitian Galois-qudit code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/stabilizer_over_gfqsq
BibTeX:
@incollection{eczoo_stabilizer_over_gfqsq, title={Hermitian Galois-qudit code}, booktitle={The Error Correction Zoo}, year={2022}, editor={Albert, Victor V. and Faist, Philippe}, url={https://errorcorrectionzoo.org/c/stabilizer_over_gfqsq} }
Share via:
Twitter | Mastodon |  | E-mail
Permanent link:
https://errorcorrectionzoo.org/c/stabilizer_over_gfqsq

Cite as:

“Hermitian Galois-qudit code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/stabilizer_over_gfqsq

Github: https://github.com/errorcorrectionzoo/eczoo_data/edit/main/codes/quantum/qudits_galois/stabilizer/stabilizer_over_gfqsq.yml.