Galois-qudit BCH code[17] 

Description

True Galois-qudit stabilizer code constructed from BCH codes via either the Hermitian construction or the Galois-qudit CSS construction. Parameters can be improved by applying Steane enlargement [8].

Notes

See Ref. [9] for an overview of quantum BCH codes.

Parent

Child

  • Qubit BCH code — Galois-qudit BCH codes for \(q=2\) reduce to qubit BCH codes.

Cousins

References

[1]
S. Aly, A. Klappenecker, and P. K. Sarvepalli, “Primitive Quantum BCH Codes over Finite Fields”, (2006) arXiv:quant-ph/0501126
[2]
S. A. Aly, A. Klappenecker, and P. K. Sarvepalli, “On Quantum and Classical BCH Codes”, (2006) arXiv:quant-ph/0604102
[3]
Z. Ma, X. Lu, K. Feng, and D. Feng, “On Non-binary Quantum BCH Codes”, Lecture Notes in Computer Science 675 (2006) DOI
[4]
S. A. Aly, A. Klappenecker, and P. K. Sarvepalli, “On Quantum and Classical BCH Codes”, IEEE Transactions on Information Theory 53, 1183 (2007) DOI
[5]
R. Li, F. Zou, Y. Liu, and Z. Xu, “Hermitian dual containing BCH codes and Construction of new quantum codes”, Quantum Information and Computation 13, 21 (2013) DOI
[6]
G. G. La Guardia, “Constructions of new families of nonbinary quantum codes”, Physical Review A 80, (2009) DOI
[7]
X. Zhao, X. Li, Q. Wang, and T. Yan, “Hermitian dual-containing constacyclic BCH codes and related quantum codes of length \(\frac{q^{2m}-1}{q+1}\)”, (2020) arXiv:2007.13309
[8]
G. G. La Guardia and R. Palazzo Jr., “Constructions of new families of nonbinary CSS codes”, Discrete Mathematics 310, 2935 (2010) DOI
[9]
A. Klappenecker, “Algebraic quantum coding theory”, Quantum Error Correction 307 (2013) DOI
[10]
P. K. Sarvepalli, A. Klappenecker, and M. Rötteler, “Asymmetric quantum codes: constructions, bounds and performance”, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 465, 1645 (2009) DOI
[11]
L. Ioffe and M. Mézard, “Asymmetric quantum error-correcting codes”, Physical Review A 75, (2007) arXiv:quant-ph/0606107 DOI
[12]
S. A. Aly, “Asymmetric quantum BCH codes”, 2008 International Conference on Computer Engineering & Systems (2008) DOI
[13]
G. G. La Guardia, “New families of asymmetric quantum BCH codes”, Quantum Information and Computation 11, 239 (2011) DOI
[14]
S. A. Aly, “Asymmetric and Symmetric Subsystem BCH Codes and Beyond”, (2008) arXiv:0803.0764
[15]
S. A. Aly, “Families of LDPC Codes Derived from Nonprimitive BCH Codes and Cyclotomic Cosets”, (2008) arXiv:0802.4079
[16]
P. K. Sarvepalli, A. Klappenecker, and M. Rotteler, “Asymmetric quantum LDPC codes”, 2008 IEEE International Symposium on Information Theory (2008) arXiv:0804.4316 DOI
Page edit log

Your contribution is welcome!

on github.com (edit & pull request)— see instructions

edit on this site

Zoo Code ID: galois_bch

Cite as:
“Galois-qudit BCH code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/galois_bch
BibTeX:
@incollection{eczoo_galois_bch, title={Galois-qudit BCH code}, booktitle={The Error Correction Zoo}, year={2022}, editor={Albert, Victor V. and Faist, Philippe}, url={https://errorcorrectionzoo.org/c/galois_bch} }
Share via:
Twitter | Mastodon |  | E-mail
Permanent link:
https://errorcorrectionzoo.org/c/galois_bch

Cite as:

“Galois-qudit BCH code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/galois_bch

Github: https://github.com/errorcorrectionzoo/eczoo_data/edit/main/codes/quantum/qudits_galois/stabilizer/bch/galois_bch.yml.