Subsystem Galois-qudit stabilizer code[1]
Also known as Gauge Galois-qudit stabilizer code.
Description
Galois-qudit generalization of a subsystem qubit stabilizer code. Can be obtained by taking a Galois-qudit stabilizer code and assigning some of its logical qubits to be gauge qubits.
Protection
Bounds on code parameters are formulated in Ref. [2]. The Singleton bound has been extended to Galois-qudit subsystem codes [3].
Parent
Children
- Subsystem qubit stabilizer code — Subsystem Galois-qudit stabilizer codes reduce to subsystem qubit stabilizer codes for qudit dimension \(q=2\).
- Subsystem Galois-qudit CSS code
Cousins
- Galois-qudit stabilizer code — Subsystem Galois-qudit stabilizer codes reduce to Galois-qudit stabilizer codes when there are no gauge qudits.
- Quantum maximum-distance-separable (MDS) code — All pure MDS subsystem stabilizer codes are derived from MDS stabilizer codes [4].
- Galois-qudit BCH code — Asymmetric quantum BCH codes have been constructed [6–8][5; Lemma 4.4], including subsystem BCH codes [9].
- Hermitian Galois-qudit code — The Hermitian construction has been extended to subsystem Galois-qudit stabilizer codes [2].
References
- [1]
- A. Klappenecker and P. K. Sarvepalli, “Clifford Code Constructions of Operator Quantum Error Correcting Codes”, (2006) arXiv:quant-ph/0604161
- [2]
- S. A. Aly, A. Klappenecker, and P. K. Sarvepalli, “Subsystem Codes”, (2006) arXiv:quant-ph/0610153
- [3]
- A. Klappenecker and P. K. Sarvepalli, “On subsystem codes beating the quantum Hamming or Singleton bound”, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 463, 2887 (2007) arXiv:quant-ph/0703213 DOI
- [4]
- S. A. Aly and A. Klappenecker, “Subsystem Code Constructions”, (2008) arXiv:0712.4321
- [5]
- P. K. Sarvepalli, A. Klappenecker, and M. Rötteler, “Asymmetric quantum codes: constructions, bounds and performance”, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 465, 1645 (2009) DOI
- [6]
- L. Ioffe and M. Mézard, “Asymmetric quantum error-correcting codes”, Physical Review A 75, (2007) arXiv:quant-ph/0606107 DOI
- [7]
- S. A. Aly, “Asymmetric quantum BCH codes”, 2008 International Conference on Computer Engineering & Systems (2008) DOI
- [8]
- G. G. La Guardia, “New families of asymmetric quantum BCH codes”, Quantum Information and Computation 11, 239 (2011) DOI
- [9]
- S. A. Aly, “Asymmetric and Symmetric Subsystem BCH Codes and Beyond”, (2008) arXiv:0803.0764
Page edit log
- Victor V. Albert (2022-11-09) — most recent
Cite as:
“Subsystem Galois-qudit stabilizer code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/galois_subsystem_stabilizer