[Jump to code hierarchy]

Subsystem QECC[1,2]

Alternative names: Operator QECC (OQECC), Gauge QECC.

Description

A quantum code which encodes quantum information in a tensor factor of a subspace that is decomposed into a tensor product of subsystems.

A subsystem code encodes information in a subsystem \(\mathsf{A}\) of the code space \(\mathsf{C}\), which is part of the system Hilbert space \(\mathsf{H}\), as \begin{align} \mathsf{H}=\mathsf{C} \oplus \mathsf{C}^{\perp} = \mathsf{A} \otimes \mathsf{B} \oplus \mathsf{C}^{\perp}~. \tag*{(1)}\end{align} Following an error, it is sufficient to revert back to the original state modulo a transformation on the auxiliary or gauge subsystem \(\mathsf{B}\). The subsystem \(\mathsf{B}\) therefore gives additional freedom to the error correction process, and is said to encode gauge qubits when its dimension is a power of two. While strictly speaking all operator QECCs are also ordinary QECCs, the attachment of a subsystem to a code allows for a wider variety of encoding procedures, fault-tolerant logical operations, and efficient error-correction protocols.

Protection

Necessary and sufficient [3] error-correction conditions are, for all errors \(E_a,E_b\) in an error set \(\cal{E}\), \begin{align} \Pi E^{\dagger}_a E_b \Pi = I_{\mathsf{A}} \otimes g_{ab}^{\mathsf{B}} \tag*{(2)}\end{align} where \(\Pi\) is a projector onto the codespace \(\mathsf{C}\), and \(g_{ab}^{\mathsf{B}}\) is an arbitrary operator on the gauge subsystem. These have also been studied in the presence of continuous noise [4].

A unitarily correctable subsystem is a subsystem code whose encoded information can be recovered via a unitary, i.e., in a measurement-free way [5] (see also [6]). For unital noise channels, such codes are related to the multiplicative domain of the channel [7].

Encoding

Subsystem QECCs are robust to initialization errors [8].

Realizations

A two-qubit unitarily correctable subsystem code recovery has been realized in an optical system [9].

Notes

See Ref. [10] for an introduction to operator QEC.

Cousins

References

[1]
D. Kribs, R. Laflamme, and D. Poulin, “Unified and Generalized Approach to Quantum Error Correction”, Physical Review Letters 94, (2005) arXiv:quant-ph/0412076 DOI
[2]
D. W. Kribs, R. Laflamme, D. Poulin, and M. Lesosky, “Operator quantum error correction”, (2006) arXiv:quant-ph/0504189
[3]
M. A. Nielsen and D. Poulin, “Algebraic and information-theoretic conditions for operator quantum error correction”, Physical Review A 75, (2007) arXiv:quant-ph/0506069 DOI
[4]
O. Oreshkov, D. A. Lidar, and T. A. Brun, “Operator quantum error correction for continuous dynamics”, Physical Review A 78, (2008) arXiv:0806.3145 DOI
[5]
D. W. Kribs and R. W. Spekkens, “Quantum error-correcting subsystems are unitarily recoverable subsystems”, Physical Review A 74, (2006) arXiv:quant-ph/0608045 DOI
[6]
A. Peres, “Unitary dynamics for quantum codewords”, (1996) arXiv:quant-ph/9609015
[7]
M.-D. Choi, N. Johnston, and D. W. Kribs, “The multiplicative domain in quantum error correction”, Journal of Physics A: Mathematical and Theoretical 42, 245303 (2009) arXiv:0811.0947 DOI
[8]
O. Oreshkov, “Robustness of operator quantum error correction with respect to initialization errors”, Physical Review A 77, (2008) arXiv:0709.3533 DOI
[9]
K. M. Schreiter, A. Pasieka, R. Kaltenbaek, K. J. Resch, and D. W. Kribs, “Optical implementation of a unitarily correctable code”, Physical Review A 80, (2009) arXiv:0909.1584 DOI
[10]
D. Kribs and D. Poulin, “Operator quantum error correction”, Quantum Error Correction 163 (2013) DOI
[11]
P. Kumar, “A Class of Quantum Double Subsystem Codes”, (2011) DOI
[12]
A. Klappenecker and P. K. Sarvepalli, “Clifford Code Constructions of Operator Quantum Error Correcting Codes”, (2006) arXiv:quant-ph/0604161
[13]
D. Zhang and T. Cubitt, “Quantum Error Transmutation”, (2023) arXiv:2310.10278
[14]
A. Nemec and A. Klappenecker, “Encoding classical information in gauge subsystems of quantum codes”, International Journal of Quantum Information 20, (2022) DOI
Page edit log

Your contribution is welcome!

on github.com (edit & pull request)— see instructions

edit on this site

Zoo Code ID: oecc

Cite as:
“Subsystem QECC”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/oecc
BibTeX:
@incollection{eczoo_oecc, title={Subsystem QECC}, booktitle={The Error Correction Zoo}, year={2022}, editor={Albert, Victor V. and Faist, Philippe}, url={https://errorcorrectionzoo.org/c/oecc} }
Share via:
Twitter | Mastodon |  | E-mail
Permanent link:
https://errorcorrectionzoo.org/c/oecc

Cite as:

“Subsystem QECC”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/oecc

Github: https://github.com/errorcorrectionzoo/eczoo_data/edit/main/codes/quantum/oecc.yml.