Here is a list of quantum codes that have been realized in devices and/or that have practical real-world relevance.
Name | Realization(s) |
---|---|
Analog stabilizer code | One-sided device-independent QKD [1]. |
Analog-cluster-state code | Analog cluster states on a number of modes ranging from tens to millions [2–4] have been synthesized in photonic degrees of freedom.Required primitives for Gaussian gates have been realized [5]. |
BPSK c-q code | Linear-optical quantum receiver [6].Homodyne receiver [7].Kennedy receiver [7,8].Photon-number resolving detector [9].Communication over dephasing [10], time-varying phase-noise [11], and thermal-noise [12] channels.Adaptive decoder using displacements and photon detection [13].BPQM detector on a BPSK-modulated tree code [14]. |
Binomial code | Microwave cavities coupled to superconducting circuits: state transfer between a binomial codeword to another system [15], error-correction protocol nearly reaching break-even [16], a teleported CNOT gate [17], and fault-tolerant logical operations utilizing three-level ancillas [18]. A realization of the "0-2-4" encoding is the first to go beyond break-even error-correction and yields a logical lifetime that exceeds the cavity lifetime by \(16\%\) [19] (see also [20]). See Ref. [21] for another experiment.Motional degree of freedom of a trapped ion: binomial state preparation for \(S=2\) realized by Tan group [22]. |
Cat code | Parity-syndrome measurement tested [23] and implemented for the four-component (\(S=1\)) cat code [24] in a microwave cavity coupled to a superconducting circuit. The latter work [24] is the first to reach break-even error-correction, where the lifetime of a logical qubit is on par with the cavity lifetime, despite protection against dephasing not being implemented. A fault-tolerant version of parity measurement has also been realized [25]. |
Cat-repetition code | Superconducting circuit devices: a repetition code out of two-component cat qubits has been realized for distances 3 and 5 [26]. |
Cluster-state code | Quantum compututation with cluster states has been realized in the polarizations of photons [27,28]. |
Coherent FSK (CFSK) c-q code | Time-resolving quantum receiver [29].Bondurant receiver [30].Bayesian inference [31]. |
Coherent-state c-q code | Continuous-variable quantum key distribution (CV-QKD) [32–34]. |
Dihedral \(G=D_m\) quantum-double code | Signatures of a phase equivalent to the \(G=D_4\) quantum double detected in a 27-qubit trapped-ion device by Quantinuum [35]. Preparation of ground states and braiding of anyons has also been performed. The phase was realized as a gauged \(G=\mathbb{Z}_3^2\) twisted quantum double [36], which is the same topological order as the \(G=D_4\) quantum double [37,38]. |
Dual-rail quantum code | The dual-rail code is ubiquitous in linear-optical quantum devices and is behind the KLM protocol, one of the first proposals for fault-tolerant computation. See reviews [39–41] for more details.Superconducting circuit devices: Gates have been demonstrated in the Schoelkopf group at Yale University [42]. Error detection has been demonstrated in 3D cavities in the Devoret group at Yale University [43] and Amazon Web Services [44] using transmon qubits, following earlier theoretical proposals [45,46]. Logical readout in 3D cavities has been demonstrated by Quantum Circuits Inc. [47].Photonic platforms: state preparation and measurement fidelity of \(99.98\%\) in the C telecom band by PsiQuantum [48]. |
Error-corrected sensing code | A single physical qubit entangled with an NV spin was used to measure an incoming signal in a way that bit-flip errors on the qubit were correctable [49]. |
Fibonacci string-net code | NMR: Implementation of braiding-based Hamamard gate on two qubits [50].Superconducting qubits: state preparation, fusion, and braiding [51,52]. The latter work utilized DSNP and sampled the string-net wavefunction to estimate the underlying chromatic polynomial. |
Five-qubit perfect code | NMR: Implementation of perfect error correcting code on 5 spin subsystem of labeled crotonic acid for quantum network benchmarking [53]. Single-qubit logical gates [54]. Magic-state distillation using 7-qubit device [55].Superconducting qubits [56].Trapped-ion qubits: non-transversal CNOT gate between two logical qubits, including rounds of correction and fault-tolerant primitives such as flag qubits and pieceable fault tolerance, on a 12-qubit device by Quantinuum [57]. Real-time magic-state distillation [58].Nitrogen-vacancy centers in diamond: fault-tolerant single-qubit Clifford operations using two ancillas [59]. The fault-tolerant circuit yields better fidelity than the non-fault-tolerant circuit. |
Floquet color code | Plaquette stabilizer measurement realized on the IBM Falcon superconducting-qubit device [60] |
Generalized Shor code | The \([[m^2,1,m]]\) codes for \(m\leq 7\) have been realized in trapped-ion quantum devices [61]. |
Group GKP code | Cryptographic applications stemming from the monogamy of entanglement of group GKP code and error words [1]. |
Heavy-hexagon code | Superconducting qubits: Logical state preparation and flag-qubit error correction realized in superconducting-circuit devices (specifically, fixed-frequency transmon qubit architectures) by IBM for \(d=2\) [62,63] and \(d=3\) [64]. Simultaneous syndrome extraction and logical Bell-state preparation for both the embedded surface and Bacon-Shor codes of distance \(\leq 4\) on an IBM 133-qubit device [65]. Embedded rotated surface code magic-state injection implemented on IBM fez device [66]. |
Hexagonal GKP code | Microwave cavity coupled to superconducting circuits: reduced form of GKP error correction, where displacement error syndromes are measured to one bit of precision using an ancillary transmon [67]. |
Honeycomb (6.6.6) color code | Superconducting qubits: transversal Clifford gates, randomized logical benchmarking, and magic-state injection demonstrated on distance-three and five triangular color codes on the Willow device by Google Quantum AI [68]. Logical state teleportation using lattice surgery performed between two distance-three color codes. |
Honeycomb Floquet code | Plaquette stabilizer measurement realized on the IBM Falcon superconducting-qubit device [60] |
Kitaev chain code | Photonic systems: braiding of defects has been simulated in a device that has a different notion of locality than a bona-fide fermionic system [69].Superconducting circuits: initialization [70], braiding [71] and detection [71,72] of defects has been simulated in devices that have a different notion of locality than a bona-fide fermionic system. |
Kitaev surface code | Signatures of corresponding topological phase of matter detected in superconducting circuits [73] and two-dimensional Rydberg atomic arrays [74]. Measurement schedules associated with the 3CX surface code realized in superconducting qubits on the Willow device by Google Quantum AI [75]. |
Long-range enhanced surface code (LRESC) | Preparation of GHZ state of four logical qubits with beyond break-even fidelity in a \([[25,4,3]]\) LRESC [76]. |
Loop toric code | Trapped ions: single-shot QEC realized using the \([[33,1,4]]\) loop toric code on the Quantinuum H2 device [77]. |
Matching code | Braiding of defects has been demonstrated for a five-qubit version of code [78]. |
Modular-qudit cluster-state code | Quantum compututation with cluster states has been realized using photons in the time and frequency domains [79]. |
Modular-qudit surface code | State preparation, anyon creation, anyon fusion, and transfer of entanglement between anyons and defect in a 24 qubit trapped ion device by Quantinuum [80]. |
Monitored random-circuit code | Measurement induced quantum phases have been realized in a trapped-ion processor [81]. |
NTRU-GKP code | Public-key NTRU-based quantum communication protocol [82]. |
Niset-Andersen-Cerf code | Realized in Ref. [83] in an optical system with 3 beam-splitters. The fidelity peaked around \(0.6\) for deterministic approach, and around \(0.77\) for the probabilistic approach (with a 25% chance of error). |
Number-phase code | Motional degree of freedom of a trapped ion: state initialization [84]. |
On-off keyed (OOK) c-q code | Proof-of-principle experiments using Dolinar [85] and TES receivers [86]. |
PPM c-q code | Conditional pulse nulling (CPN) receiver [87]. |
PSK c-q code | Unambiguous state discrimination using displacement-based receiver for 4-PSK [88].Multi-stage quantum receivers [89–92].Bayesian inference [93].Time resolving quantum receiver opertaing in the telecom C band [94].Displacements and photon detection [95].Adaptive decoder using linear-optical elements and photon detection [13]. |
Pair-cat code | Microwave cavities coupled to superconducting circuits by the Wang group [96]. |
Quantum Tanner code | Used to obtain explicit lower bounds in the sum-of-squares game [97].States that, on average, achieve small violations of check operators for quantum Tanner codes require a circuit of non-constant depth to make. They are used in the proof [98] of the NLTS conjecture [99]. |
Quantum divisible code | Triply even codes can yield secure multi-party quantum computation [100]. |
Quantum parity code (QPC) | The \([[m^2,1,m]]\) codes for \(m\leq 7\) have been realized in trapped-ion quantum devices [61].QPCs have been discussed independently in the context of superconducting circuits [101; Eq. (1)][102; Eqs. (8-10)], and aspects of such designs have been realized in experiments [103]. |
Quantum repetition code | NMR: 3-qubit phase-flip code [104,105], with up to two rounds of error correction in liquid-state NMR [106].Trapped ions: 3-qubit bit-flip code by Wineland group [107], and 3-qubit phase-flip algorithm implemented in 3 cycles on high fidelity gate operations [108]. Both phase- and bit-flip codes for 31 qubits and their stabilizer measurements have been realized by Quantinuum [109]. Multiple rounds of Steane error correction [110].Superconducting circuits: 3-qubit phase-flip and bit-flip code by Schoelkopf group [111,112]; 3-qubit bit-flip code [113]; 3-qubit phase-flip code up to 3 cycles of error correction [114]; IBM 15-qubit device [115]; IBM Rochester device using 43-qubit code [116]; Google system performing up to 8 error-correction cycles on 5 and 9 qubits [117]; Google Quantum AI Sycamore utilizing up to 11 physical qubits and running 50 correction rounds [118]; Google Quantum AI Sycamore utilizing up to 25 qubits for comparison of logical error scaling with a quantum code [119] (see also [120]). Google Quantum AI follow-up experiment on codes up to (classical) distance 29, demonstrating exponential suppression to an error floor of \(10^{-10}\) [121]. Ising-model Nishimori phase transition realized for GHZ states on 54 qubits on a 127 qubit IBM device [122]. GHZ state on 75 qubits made on an IBM device [123].Continuous error correction protocols have been implemented on a 3-qubit superconducting qubit device [124].Semiconductor spin-qubit devices: 3-qubit devices at RIKEN [125] and Delft [126].Nitrogen-vacancy centers in diamond: 3-qubit phase-flip code [127,128] (see also Ref. [129]).Repetition codes are used in quantum annealing protocols [130–132]. |
Qubit CSS code | Fully homomorphic encryption [133].Cryptographic applications stemming from the monogamy of entanglement of CSS code and error words [134]. |
Qubit c-q code | Quantum enhancement was demonstrated using a polarization-based non-error-correcting c-q encodings [135]. |
Smolin-Smith-Wehner (SSW) code | The \(((5,5,2))\) SSW code has been realized in an NMR device [136]. |
Square-lattice GKP code | Motional degree of freedom of a trapped ion: square-lattice GKP encoding realized with the help of post-selection by Home group [137,138], followed by realization of reduced form of GKP error correction, where displacement error syndromes are measured to one bit of precision using an ion electronic state [139]. State preparation also realized by Tan group [22]. Universal gate set, including a two-qubit entangling gate, realized by Tan group [140]. State initialization and application to measuring displacements [84].Microwave cavity coupled to superconducting circuits: reduced form of square-lattice GKP error correction, where displacement error syndromes are measured to one bit of precision using an ancillary transmon [67]. Subsequent paper by Devoret group [20] uses reinforcement learning for error-correction cycle design and is the first to go beyond break-even error-correction, with the lifetime of a logical qubit exceeding the cavity lifetime by about a factor of two (see also [19]). See Ref. [21] for another experiment. A feed-forward-free, i.e., fully autonomous protocol has also been implemented by Nord Quantique [141]. Qudit encodings with \(q=3,4\) have been realized, with logical error rates also beyond break even [142].GKP states and homodyne measurements have been realized in propagating telecom light by the Furusawa group [143].Single-qubit \(Z\)-gate has been demonstrated [144] in the single-photon subspace of an infinite-mode space [145], in which time and frequency become bosonic conjugate variables of a single effective bosonic mode. In this context, GKP position-state wavefunctions are called Dirac combs or frequency combs. |
Square-octagon (4.8.8) color code | Rydberg atomic devices: logical magic-state distillation using distance-three and five 4.8.8 color codes, observing an improvement in logical fidelity on a device by Quera [146]. |
Squeezed cat code | Squeezed cat code has been realized in a superconducting circuit device by the Gao group [147]. |
Subsystem QECC | A two-qubit unitarily correctable subsystem code recovery has been realized in an optical system [148]. |
Surface-17 code | Implemented at ETH Zurich by the Wallraff group [149] and on the Zuchongzhi 2.1 superconducting quantum processor [150]. Both experimental error rates are above the pseudo-threshold for this code relative to a single qubit; see Physics viewpoint for a summary [151]. Magic state have been created on the latter processor [152]. |
Toric code | One cycle of syndrome readout on 19-qubit planar and 24-qubit toric codes realized in two-dimensional Rydberg atomic arrays [153]. |
Twist-defect surface code | Ground state of the toric code has been implemented with and without twists, and the non-Abelian braiding behavior of the twists, which realize Ising anyons, has been demonstrated [154]. Logical Clifford gates for \([[8,2,2]]\) and \([[10,2,3]]\) twist-defect surface codes realized in a trapped ion device by Quantinuum [155]. |
Two-component cat code | Lindbladian-based [156,157] and Hamiltonian-based 'Kerr-cat' [158] encodings have been achieved in superconducting circuit devices by the Devoret group; Ref. [157] also demonstrated a displacement-based gate. The Lindbladian-based scheme has further achieved a suppression of bit-flip errors that is exponential in the average photon number up to a bit-flip time of 1ms [159]. A bit-flip time of up to 10s has been achieved for the two-legged cat code in the classical-bit regime [160–162]. A holonomic gate has been repurposed as a logical measurement [163]. The 'Kerr-cat' encoding and a \(\pi/2\) gate have been realized with the help of a band-block filter, yielding a bit-flip lifetime of 1 ms in the 10-photon regime [164] (see also Ref. [165]). Lindblad-based encoding achieved in a 2D cavity by AWS [166].T4C code realized in a superconducting circuit device by the Wang group [167].Squeezed cat code has been realized in superconducting circuit device by the Gao group [147]. |
Very small logical qubit (VSLQ) code | Star-code autonomous correction scheme realized using superconducting circuits [168]. |
XZZX surface code | Superconducting circuits: Distance-five 25-qubit code implemented on a superconducting quantum processor by Google Quantum AI [119]. This code outperformed the average of several instances of the smaller distance-three nine-qubit \(XZZX\) variant of the surface-17 code realized on the same device, both in terms of logical error probability over 25 cycles and in terms of logical error per cycle. This increase in error-correcting capabilities while using more physical qubits supports the notion of an error threshold. Braiding of defects has been demonstrated for the distance-five code [169]. Leakage errors have been handled in a separate work in a distance-three code [120]. Google Quantum AI follow-up experiment realizing distance-5 and distance-7 codes with 100 rounds of correction using the Libra and transformer-based decoders. The logical error rate is suppressed by a factor of \(\approx 2\), demonstrating beyond-break-even error correction with a block quantum code [121]. Rydberg atom arrays: Lukin group [170]. Transversal CNOT gates performed on distance \(3\), \(5\), and \(7\) codes. |
Zero-pi qubit code | A related superconducting circuit has been realized by the Houck group [171]. |
\([[10,1,2]]\) CSS code | Trapped-ion devices: fault-tolerant universal gate set via code switching between the Steane code and the \([[10,1,2]]\) code on a device from the Monz group [172]. |
\([[12,2,4]]\) carbon code | Trapped-ion devices: Three rounds of error correction and post-selected fault-tolerant logical Bell-state preparation with logical error rates at least 5 times lower than physical rate on a quantum charge-coupled device (QCCD) [109] by Microsoft and Quantinuum [173]. |
\([[16,6,4]]\) Tesseract color code | Trapped-ion devices: logical graph and GHZ states of up to 12 logical qubits constructed using three copies of the \([[16,4,2,4]]\) tesseract subsystem code, along with five rounds of post-selected fault-tolerant error correction in a device by Quantinuum [174]. |
\([[2m,2m-2,2]]\) error-detecting code | Trapped-ion devices: the \(m=5\) code has been realized on a 12-qubit device by Quantinuum [175]. |
\([[4,2,2]]\) Four-qubit code | See also [176; Tab. I] for more details on each experimental realization.\([[4,1,2]]\) subcodes implemented in linear optical networks [177,178].Trapped-ion device by IonQ [179].Logical state preparation and flag-qubit error correction realized in superconducting-circuit devices by IBM [62,63,180,181].The subcode \(\{|\overline{00}\rangle,|\overline{10}\rangle\}\) [182] and \(\{|\overline{00}\rangle,|\overline{01}\rangle\}\) [118], treated as a planar surface code, has been realized in superconducting-circuit devices.Logical gates between two copies of the subcode \(\{|\overline{10}\rangle,|\overline{11}\rangle\}\), interpreted as lattice surgery between planar surface codes, realized in superconducting circuits [183].Logical gates for the \(\{|\overline{00}\rangle,|\overline{11}\rangle\}\) subcode, treated as a planar code, realized in superconducting circuits [184].The CZ magic state has been realized on an IBM heavy-hex superconducting circuit device [185].Logical Clifford gates for a twist-defect surface code that is single-qubit Clifford equivalent to a \([[4,1,2]]\) realized in a trapped ion device by Quantinuum [155].CPC gadgets for the \([[4,2,2]]\) code have been implemented on the IBM 5Q superconducting device [186].An FPGA implementation of the collision clustering decoder [187] realized on a Rigetti supercondutcing device [188].Rydberg atomic devices: error detection, erasure correction, and post-selected fault-tolerant circuits demonstrated on 24 logical qubits on a 256-qubit device by Atom Computing, with each qubit encoded in the \([[4,2,2]]\) code [189]. The device also ran the Bernstein-Vazirani algorithm on up to 28 logical qubits encoded in a \([[4,1,2]]\) subcode [189]. Post-selected fault-tolerant realization of a benchmarking protocol [190], preparation of the ground state of the single-impurity Anderson impurity model, and post-selected fault-tolerant logical Bell-state preparation demonstrated on one copy of the \([[4,2,2]]\) code on a device by Infleqtion [176]. |
\([[6,4,2]]\) error-detecting code | Trapped-ion devices: Bayesian quantum phase estimation on a device by Quantinuum [191]. |
\([[7,1,3]]\) Steane code | Trapped-ion devices: seven-qubit device in Blatt group [192]. Ten-qubit QCCD device by Quantinuum [193] realizing repeated syndrome extraction, real-time look-up-table decoding (yielding lower logical SPAM error rate than physical SPAM), and non-fault-tolerant magic-state distillation (see APS Physics Synopsis [194]). Fault-tolerant universal two-qubit gate set using T injection by Monz group [195]. Logical CNOT gate and Bell-pair creation between two logical qubits (yielding a logical fidelity higher than physical), including rounds of correction and fault-tolerant primitives such as flag qubits and pieceable fault tolerance, on a 20-qubit device by Quantinuum [57]; logical fidelity interval of the combined preparation-CNOT-measurement procedure was higher than that of the unencoded physical qubits. Multiple rounds of Steane error correction [110]. Fault-tolerant universal gate set via code switching between the Steane code and the \([[10,1,2]]\) code [172]. Post-selected fault-tolerant logical Bell-state preparation with logical error rates at least 10 times lower than physical rate on a device by Quantinuum [173]. The quantum Fourier transform on three code blocks [196]. Fault-tolerant transversal and lattice-surgery state teleportation protocols as well as Knill error correction [197]. Rains shadow enumerators have been measured [198].Rydberg atom arrays: Lukin group [153]; ten logical qubits, transversal CNOT gate performed, logical ten-qubit GHZ state initialized with break-even fidelity, and fault-tolerant logical two-qubit GHZ state initialized [170]. |
\([[8,3,2]]\) CSS code | Trapped ions: one-qubit addition algorithm implemented fault-tolerantly on the Quantinuum H1-1 device [199].Superconducting circuits: fault-tolerant \(CZZ\) gate performed on IBM and IonQ devices [200].Rydberg atom arrays: Lukin group [170]. 48 logical qubits, 228 logical two-qubit gates, 48 logical CCZ gates, and error detection peformed in 16 blocks. Circuit outcomes were sampled and cross-entropy (XEB) was calculated to verify quantumness. Logical entanglement entropy was measured [170]. |
\([[9,1,3,3]]\) Nine-qubit Bacon-Shor code | Trapped-ion qubits: state preparation, logical measurement, and syndrome extraction (deferred to the end) demonstrated on a 13-qubit device by M. Cetina and C. Monroe groups [201].Rydberg atomic devices: repeated error correction demonstrated on a device by Atom Computing [189]. |
\([[9,1,3]]\) Shor code | Trapped-ion qubits: state preparation with 98.8(1)% and 98.5(1)% fidelity for state \(|\overline{0}\rangle\) and \(|\overline{1}\rangle\), respectively, by N. Linke group [61]. Variants of the code to handle coherent noise studied and realized by K. Brown and C. Monroe groups [202].Optical systems: quantum teleportation of information implemented by J.-W. Pan group on maximally entangled pair of one physical and one logical qubit with fidelity rate of up to 78.6% [203]. All-photonic quantum repeater architecture tested on the same code [204]. |
\([[9,1,3]]_{\mathbb{R}}\) Lloyd-Slotine code | Optical network by the Furusawa group [205]. |
References
- [1]
- E. Culf, T. Vidick, and V. V. Albert, “Group coset monogamy games and an application to device-independent continuous-variable QKD”, (2022) arXiv:2212.03935
- [2]
- S. Yokoyama, R. Ukai, S. C. Armstrong, C. Sornphiphatphong, T. Kaji, S. Suzuki, J. Yoshikawa, H. Yonezawa, N. C. Menicucci, and A. Furusawa, “Ultra-large-scale continuous-variable cluster states multiplexed in the time domain”, Nature Photonics 7, 982 (2013) arXiv:1306.3366 DOI
- [3]
- M. Chen, N. C. Menicucci, and O. Pfister, “Experimental Realization of Multipartite Entanglement of 60 Modes of a Quantum Optical Frequency Comb”, Physical Review Letters 112, (2014) arXiv:1311.2957 DOI
- [4]
- J. Yoshikawa, S. Yokoyama, T. Kaji, C. Sornphiphatphong, Y. Shiozawa, K. Makino, and A. Furusawa, “Invited Article: Generation of one-million-mode continuous-variable cluster state by unlimited time-domain multiplexing”, APL Photonics 1, (2016) arXiv:1606.06688 DOI
- [5]
- Y. Miwa, J. Yoshikawa, P. van Loock, and A. Furusawa, “Demonstration of a universal one-way quantum quadratic phase gate”, Physical Review A 80, (2009) arXiv:0906.3141 DOI
- [6]
- K. Tsujino, D. Fukuda, G. Fujii, S. Inoue, M. Fujiwara, M. Takeoka, and M. Sasaki, “Quantum Receiver beyond the Standard Quantum Limit of Coherent Optical Communication”, Physical Review Letters 106, (2011) arXiv:1103.5592 DOI
- [7]
- C. Wittmann, M. Takeoka, K. N. Cassemiro, M. Sasaki, G. Leuchs, and U. L. Andersen, “Demonstration of Near-Optimal Discrimination of Optical Coherent States”, Physical Review Letters 101, (2008) arXiv:0809.4953 DOI
- [8]
- M. L. Shcherbatenko, M. S. Elezov, G. N. Goltsman, and D. V. Sych, “Sub-shot-noise-limited fiber-optic quantum receiver”, Physical Review A 101, (2020) arXiv:1911.08932 DOI
- [9]
- M. T. DiMario and F. E. Becerra, “Robust Measurement for the Discrimination of Binary Coherent States”, Physical Review Letters 121, (2018) arXiv:1807.05199 DOI
- [10]
- M. T. DiMario, L. Kunz, K. Banaszek, and F. E. Becerra, “Optimized communication strategies with binary coherent states over phase noise channels”, npj Quantum Information 5, (2019) arXiv:1907.12515 DOI
- [11]
- M. T. DiMario and F. E. Becerra, “Phase tracking for sub-shot-noise-limited receivers”, Physical Review Research 2, (2020) DOI
- [12]
- R. Yuan, M. Zhao, S. Han, and J. Cheng, “Optimally Displaced Threshold Detection for Discriminating Binary Coherent States Using Imperfect Devices”, (2020) arXiv:2007.11109
- [13]
- M. T. DiMario and F. E. Becerra, “Demonstration of optimal non-projective measurement of binary coherent states with photon counting”, npj Quantum Information 8, (2022) arXiv:2207.12234 DOI
- [14]
- C. Delaney, K. P. Seshadreesan, I. MacCormack, A. Galda, S. Guha, and P. Narang, “Demonstration of a quantum advantage by a joint detection receiver for optical communication using quantum belief propagation on a trapped-ion device”, Physical Review A 106, (2022) arXiv:2102.13052 DOI
- [15]
- C. J. Axline et al., “On-demand quantum state transfer and entanglement between remote microwave cavity memories”, Nature Physics 14, 705 (2018) arXiv:1712.05832 DOI
- [16]
- L. Hu et al., “Quantum error correction and universal gate set operation on a binomial bosonic logical qubit”, Nature Physics 15, 503 (2019) arXiv:1805.09072 DOI
- [17]
- Y. Xu et al., “Demonstration of Controlled-Phase Gates between Two Error-Correctable Photonic Qubits”, Physical Review Letters 124, (2020) arXiv:1810.04690 DOI
- [18]
- P. Reinhold, S. Rosenblum, W.-L. Ma, L. Frunzio, L. Jiang, and R. J. Schoelkopf, “Error-corrected gates on an encoded qubit”, Nature Physics 16, 822 (2020) arXiv:1907.12327 DOI
- [19]
- Z. Ni et al., “Beating the break-even point with a discrete-variable-encoded logical qubit”, Nature 616, 56 (2023) arXiv:2211.09319 DOI
- [20]
- V. V. Sivak et al., “Real-time quantum error correction beyond break-even”, Nature 616, 50 (2023) arXiv:2211.09116 DOI
- [21]
- M. Kudra et al., “Robust Preparation of Wigner-Negative States with Optimized SNAP-Displacement Sequences”, PRX Quantum 3, (2022) arXiv:2111.07965 DOI
- [22]
- V. G. Matsos, C. H. Valahu, T. Navickas, A. D. Rao, M. J. Millican, X. C. Kolesnikow, M. J. Biercuk, and T. R. Tan, “Robust and Deterministic Preparation of Bosonic Logical States in a Trapped Ion”, Physical Review Letters 133, (2024) arXiv:2310.15546 DOI
- [23]
- L. Sun et al., “Tracking photon jumps with repeated quantum non-demolition parity measurements”, Nature 511, 444 (2014) arXiv:1311.2534 DOI
- [24]
- N. Ofek et al., “Demonstrating Quantum Error Correction that Extends the Lifetime of Quantum Information”, (2016) arXiv:1602.04768
- [25]
- S. Rosenblum, P. Reinhold, M. Mirrahimi, L. Jiang, L. Frunzio, and R. J. Schoelkopf, “Fault-tolerant detection of a quantum error”, Science 361, 266 (2018) arXiv:1803.00102 DOI
- [26]
- H. Putterman et al., “Hardware-efficient quantum error correction using concatenated bosonic qubits”, (2024) arXiv:2409.13025
- [27]
- P. Walther, K. J. Resch, T. Rudolph, E. Schenck, H. Weinfurter, V. Vedral, M. Aspelmeyer, and A. Zeilinger, “Experimental one-way quantum computing”, Nature 434, 169 (2005) arXiv:quant-ph/0503126 DOI
- [28]
- R. Ceccarelli, G. Vallone, F. De Martini, P. Mataloni, and A. Cabello, “Experimental Entanglement and Nonlocality of a Two-Photon Six-Qubit Cluster State”, Physical Review Letters 103, (2009) arXiv:0906.2233 DOI
- [29]
- M. V. Jabir, N. F. R. Annafianto, I. A. Burenkov, A. Battou, and S. V. Polyakov, “Energy and bandwidth efficiency optimization of quantum-enabled optical communication channels”, npj Quantum Information 8, (2022) DOI
- [30]
- M. V. Jabir, I. A. Burenkov, N. F. R. Annafianto, A. Battou, and S. V. Polyakov, “Experimental demonstration of the near-quantum optimal receiver”, OSA Continuum 3, 3324 (2020) DOI
- [31]
- I. A. Burenkov, M. V. Jabir, A. Battou, and S. V. Polyakov, “Time-Resolving Quantum Measurement Enables Energy-Efficient, Large-Alphabet Communication”, PRX Quantum 1, (2020) DOI
- [32]
- P. van Loock and S. L. Braunstein, “Unconditional teleportation of continuous-variable entanglement”, Physical Review A 61, (1999) arXiv:quant-ph/9907073 DOI
- [33]
- F. Grosshans and P. Grangier, “Continuous Variable Quantum Cryptography Using Coherent States”, Physical Review Letters 88, (2002) arXiv:quant-ph/0109084 DOI
- [34]
- F. Grosshans, G. Van Assche, J. Wenger, R. Brouri, N. J. Cerf, and P. Grangier, “Quantum key distribution using gaussian-modulated coherent states”, Nature 421, 238 (2003) arXiv:quant-ph/0312016 DOI
- [35]
- M. Iqbal et al., “Non-Abelian topological order and anyons on a trapped-ion processor”, Nature 626, 505 (2024) arXiv:2305.03766 DOI
- [36]
- B. Yoshida, “Topological phases with generalized global symmetries”, Physical Review B 93, (2016) arXiv:1508.03468 DOI
- [37]
- M. de W. Propitius, “Topological interactions in broken gauge theories”, (1995) arXiv:hep-th/9511195
- [38]
- L. Lootens, B. Vancraeynest-De Cuiper, N. Schuch, and F. Verstraete, “Mapping between Morita-equivalent string-net states with a constant depth quantum circuit”, Physical Review B 105, (2022) arXiv:2112.12757 DOI
- [39]
- C. R. Myers and R. Laflamme, “Linear Optics Quantum Computation: an Overview”, (2005) arXiv:quant-ph/0512104
- [40]
- P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits”, Reviews of Modern Physics 79, 135 (2007) arXiv:quant-ph/0512071 DOI
- [41]
- S. Slussarenko and G. J. Pryde, “Photonic quantum information processing: A concise review”, Applied Physics Reviews 6, (2019) arXiv:1907.06331 DOI
- [42]
- Y. Lu, A. Maiti, J. W. O. Garmon, S. Ganjam, Y. Zhang, J. Claes, L. Frunzio, S. M. Girvin, and R. J. Schoelkopf, “High-fidelity parametric beamsplitting with a parity-protected converter”, Nature Communications 14, (2023) DOI
- [43]
- A. Koottandavida et al., “Erasure detection of a dual-rail qubit encoded in a double-post superconducting cavity”, (2023) arXiv:2311.04423
- [44]
- H. Levine et al., “Demonstrating a Long-Coherence Dual-Rail Erasure Qubit Using Tunable Transmons”, Physical Review X 14, (2024) arXiv:2307.08737 DOI
- [45]
- J. D. Teoh et al., “Dual-rail encoding with superconducting cavities”, Proceedings of the National Academy of Sciences 120, (2023) arXiv:2212.12077 DOI
- [46]
- A. Kubica, A. Haim, Y. Vaknin, H. Levine, F. Brandão, and A. Retzker, “Erasure Qubits: Overcoming the T1 Limit in Superconducting Circuits”, Physical Review X 13, (2023) arXiv:2208.05461 DOI
- [47]
- K. S. Chou et al., “Demonstrating a superconducting dual-rail cavity qubit with erasure-detected logical measurements”, (2023) arXiv:2307.03169
- [48]
- K. Alexander et al., “A manufacturable platform for photonic quantum computing”, (2024) arXiv:2404.17570
- [49]
- T. Unden et al., “Quantum Metrology Enhanced by Repetitive Quantum Error Correction”, Physical Review Letters 116, (2016) arXiv:1602.07144 DOI
- [50]
- Y. Fan et al., “Experimental realization of a topologically protected Hadamard gate via braiding Fibonacci anyons”, (2022) arXiv:2210.12145
- [51]
- S. Xu et al., “Non-Abelian braiding of Fibonacci anyons with a superconducting processor”, Nature Physics (2024) arXiv:2404.00091 DOI
- [52]
- Z. K. Minev, K. Najafi, S. Majumder, J. Wang, A. Stern, E.-A. Kim, C.-M. Jian, and G. Zhu, “Realizing string-net condensation: Fibonacci anyon braiding for universal gates and sampling chromatic polynomials”, (2024) arXiv:2406.12820
- [53]
- E. Knill, R. Laflamme, R. Martinez, and C. Negrevergne, “Benchmarking Quantum Computers: The Five-Qubit Error Correcting Code”, Physical Review Letters 86, 5811 (2001) arXiv:quant-ph/0101034 DOI
- [54]
- J. Zhang, R. Laflamme, and D. Suter, “Experimental Implementation of Encoded Logical Qubit Operations in a Perfect Quantum Error Correcting Code”, Physical Review Letters 109, (2012) arXiv:1208.4797 DOI
- [55]
- A. M. Souza, J. Zhang, C. A. Ryan, and R. Laflamme, “Experimental magic state distillation for fault-tolerant quantum computing”, Nature Communications 2, (2011) arXiv:1103.2178 DOI
- [56]
- M. Gong et al., “Experimental exploration of five-qubit quantum error-correcting code with superconducting qubits”, National Science Review 9, (2021) arXiv:1907.04507 DOI
- [57]
- C. Ryan-Anderson et al., “Implementing Fault-tolerant Entangling Gates on the Five-qubit Code and the Color Code”, (2022) arXiv:2208.01863
- [58]
- N. C. Brown et al., “Advances in compilation for quantum hardware -- A demonstration of magic state distillation and repeat-until-success protocols”, (2023) arXiv:2310.12106
- [59]
- M. H. Abobeih, Y. Wang, J. Randall, S. J. H. Loenen, C. E. Bradley, M. Markham, D. J. Twitchen, B. M. Terhal, and T. H. Taminiau, “Fault-tolerant operation of a logical qubit in a diamond quantum processor”, Nature 606, 884 (2022) arXiv:2108.01646 DOI
- [60]
- Wootton, James R., “Quantum error correction: From the blackboard to the cloud”, University of Basel (2023) arXiv:2210.13154 DOI
- [61]
- N. H. Nguyen, M. Li, A. M. Green, C. Huerta Alderete, Y. Zhu, D. Zhu, K. R. Brown, and N. M. Linke, “Demonstration of Shor Encoding on a Trapped-Ion Quantum Computer”, Physical Review Applied 16, (2021) arXiv:2104.01205 DOI
- [62]
- M. Takita, A. W. Cross, A. D. Córcoles, J. M. Chow, and J. M. Gambetta, “Experimental Demonstration of Fault-Tolerant State Preparation with Superconducting Qubits”, Physical Review Letters 119, (2017) arXiv:1705.09259 DOI
- [63]
- E. H. Chen, T. J. Yoder, Y. Kim, N. Sundaresan, S. Srinivasan, M. Li, A. D. Córcoles, A. W. Cross, and M. Takita, “Calibrated Decoders for Experimental Quantum Error Correction”, Physical Review Letters 128, (2022) arXiv:2110.04285 DOI
- [64]
- N. Sundaresan, T. J. Yoder, Y. Kim, M. Li, E. H. Chen, G. Harper, T. Thorbeck, A. W. Cross, A. D. Córcoles, and M. Takita, “Demonstrating multi-round subsystem quantum error correction using matching and maximum likelihood decoders”, Nature Communications 14, (2023) arXiv:2203.07205 DOI
- [65]
- B. Hetényi and J. R. Wootton, “Creating entangled logical qubits in the heavy-hex lattice with topological codes”, (2024) arXiv:2404.15989
- [66]
- Y. Kim, M. Sevior, and M. Usman, “Magic State Injection on IBM Quantum Processors Above the Distillation Threshold”, (2024) arXiv:2412.01446
- [67]
- P. Campagne-Ibarcq et al., “Quantum error correction of a qubit encoded in grid states of an oscillator”, Nature 584, 368 (2020) arXiv:1907.12487 DOI
- [68]
- N. Lacroix et al., “Scaling and logic in the color code on a superconducting quantum processor”, (2024) arXiv:2412.14256
- [69]
- J.-S. Xu, K. Sun, Y.-J. Han, C.-F. Li, J. K. Pachos, and G.-C. Guo, “Simulating the exchange of Majorana zero modes with a photonic system”, Nature Communications 7, (2016) arXiv:1411.7751 DOI
- [70]
- K. J. Sung, M. J. Rančić, O. T. Lanes, and N. T. Bronn, “Simulating Majorana zero modes on a noisy quantum processor”, Quantum Science and Technology 8, 025010 (2023) arXiv:2206.00563 DOI
- [71]
- N. Harle, O. Shtanko, and R. Movassagh, “Observing and braiding topological Majorana modes on programmable quantum simulators”, Nature Communications 14, (2023) arXiv:2203.15083 DOI
- [72]
- X. Mi et al., “Noise-resilient edge modes on a chain of superconducting qubits”, Science 378, 785 (2022) arXiv:2204.11372 DOI
- [73]
- K. J. Satzinger et al., “Realizing topologically ordered states on a quantum processor”, Science 374, 1237 (2021) arXiv:2104.01180 DOI
- [74]
- G. Semeghini et al., “Probing topological spin liquids on a programmable quantum simulator”, Science 374, 1242 (2021) arXiv:2104.04119 DOI
- [75]
- A. Eickbusch et al., “Demonstrating dynamic surface codes”, (2024) arXiv:2412.14360
- [76]
- Y. Hong, E. Durso-Sabina, D. Hayes, and A. Lucas, “Entangling Four Logical Qubits beyond Break-Even in a Nonlocal Code”, Physical Review Letters 133, (2024) arXiv:2406.02666 DOI
- [77]
- N. Berthusen et al., “Experiments with the 4D Surface Code on a QCCD Quantum Computer”, (2024) arXiv:2408.08865
- [78]
- J. R. Wootton, “Demonstrating non-Abelian braiding of surface code defects in a five qubit experiment”, Quantum Science and Technology 2, 015006 (2017) arXiv:1609.07774 DOI
- [79]
- C. Reimer et al., “High-dimensional one-way quantum processing implemented on d-level cluster states”, Nature Physics 15, 148 (2018) DOI
- [80]
- M. Iqbal et al., “Qutrit Toric Code and Parafermions in Trapped Ions”, (2024) arXiv:2411.04185
- [81]
- C. Noel et al., “Measurement-induced quantum phases realized in a trapped-ion quantum computer”, Nature Physics 18, 760 (2022) arXiv:2106.05881 DOI
- [82]
- J. Conrad, J. Eisert, and J.-P. Seifert, “Good Gottesman-Kitaev-Preskill codes from the NTRU cryptosystem”, Quantum 8, 1398 (2024) arXiv:2303.02432 DOI
- [83]
- M. Lassen, M. Sabuncu, A. Huck, J. Niset, G. Leuchs, N. J. Cerf, and U. L. Andersen, “Quantum optical coherence can survive photon losses using a continuous-variable quantum erasure-correcting code”, Nature Photonics 4, 700 (2010) arXiv:1006.3941 DOI
- [84]
- C. H. Valahu, M. P. Stafford, Z. Huang, V. G. Matsos, M. J. Millican, T. Chalermpusitarak, N. C. Menicucci, J. Combes, B. Q. Baragiola, and T. R. Tan, “Quantum-Enhanced Multi-Parameter Sensing in a Single Mode”, (2024) arXiv:2412.04865
- [85]
- R. L. Cook, P. J. Martin, and J. M. Geremia, “Optical coherent state discrimination using a closed-loop quantum measurement”, Nature 446, 774 (2007) DOI
- [86]
- K. Tsujino, D. Fukuda, G. Fujii, S. Inoue, M. Fujiwara, M. Takeoka, and M. Sasaki, “Sub-shot-noise-limit discrimination of on-off keyed coherent signals via a quantum receiver with a superconducting transition edge sensor”, Optics Express 18, 8107 (2010) DOI
- [87]
- J. Chen, J. L. Habif, Z. Dutton, R. Lazarus, and S. Guha, “Optical codeword demodulation with error rates below the standard quantum limit using a conditional nulling receiver”, Nature Photonics 6, 374 (2012) arXiv:1111.4017 DOI
- [88]
- F. E. Becerra, J. Fan, and A. Migdall, “Implementation of generalized quantum measurements for unambiguous discrimination of multiple non-orthogonal coherent states”, Nature Communications 4, (2013) DOI
- [89]
- F. E. Becerra, J. Fan, G. Baumgartner, J. Goldhar, J. T. Kosloski, and A. Migdall, “Experimental demonstration of a receiver beating the standard quantum limit for multiple nonorthogonal state discrimination”, Nature Photonics 7, 147 (2013) DOI
- [90]
- S. Izumi, J. S. Neergaard-Nielsen, S. Miki, H. Terai, and U. L. Andersen, “Experimental Demonstration of a Quantum Receiver Beating the Standard Quantum Limit at Telecom Wavelength”, Physical Review Applied 13, (2020) arXiv:2001.05902 DOI
- [91]
- F. E. Becerra, J. Fan, and A. Migdall, “Photon number resolution enables quantum receiver for realistic coherent optical communications”, Nature Photonics 9, 48 (2014) DOI
- [92]
- A. R. Ferdinand, M. T. DiMario, and F. E. Becerra, “Multi-state discrimination below the quantum noise limit at the single-photon level”, npj Quantum Information 3, (2017) arXiv:1711.00074 DOI
- [93]
- I. A. Burenkov, M. V. Jabir, N. F. R. Annafianto, A. Battou, and S. V. Polyakov, “Experimental demonstration of time resolving quantum receiver for bandwidth and power efficient communications”, Conference on Lasers and Electro-Optics (2020) DOI
- [94]
- M. V. Jabir, N. F. R. Annafianto, I. A. Burenkov, M. Dagenais, A. Battou, and S. V. Polyakov, “Versatile quantum-enabled telecom receiver”, AVS Quantum Science 5, (2023) DOI
- [95]
- S. Izumi, J. S. Neergaard-Nielsen, and U. L. Andersen, “Adaptive Generalized Measurement for Unambiguous State Discrimination of Quaternary Phase-Shift-Keying Coherent States”, PRX Quantum 2, (2021) arXiv:2009.02558 DOI
- [96]
- J. M. Gertler, S. van Geldern, S. Shirol, L. Jiang, and C. Wang, “Experimental Realization and Characterization of Stabilized Pair Coherent States”, (2022) arXiv:2209.11643
- [97]
- M. Hopkins and T.-C. Lin, “Explicit Lower Bounds Against \(Ω(n)\)-Rounds of Sum-of-Squares”, (2022) arXiv:2204.11469
- [98]
- A. Anshu, N. P. Breuckmann, and C. Nirkhe, “NLTS Hamiltonians from Good Quantum Codes”, Proceedings of the 55th Annual ACM Symposium on Theory of Computing (2023) arXiv:2206.13228 DOI
- [99]
- M. H. Freedman and M. B. Hastings, “Quantum Systems on Non-\(k\)-Hyperfinite Complexes: A Generalization of Classical Statistical Mechanics on Expander Graphs”, (2013) arXiv:1301.1363
- [100]
- P. A. Mishchenko and K. Xagawa, “Secure multiparty quantum computation protocol for quantum circuits: The exploitation of triply even quantum error-correcting codes”, Physical Review A 110, (2024) arXiv:2206.04871 DOI
- [101]
- B. Douçot, M. V. Feigel’man, L. B. Ioffe, and A. S. Ioselevich, “Protected qubits and Chern-Simons theories in Josephson junction arrays”, Physical Review B 71, (2005) arXiv:cond-mat/0403712 DOI
- [102]
- B. Douçot and L. B. Ioffe, “Physical implementation of protected qubits”, Reports on Progress in Physics 75, 072001 (2012) DOI
- [103]
- S. Gladchenko, D. Olaya, E. Dupont-Ferrier, B. Douçot, L. B. Ioffe, and M. E. Gershenson, “Superconducting nanocircuits for topologically protected qubits”, Nature Physics 5, 48 (2008) arXiv:0802.2295 DOI
- [104]
- D. G. Cory, M. D. Price, W. Maas, E. Knill, R. Laflamme, W. H. Zurek, T. F. Havel, and S. S. Somaroo, “Experimental Quantum Error Correction”, Physical Review Letters 81, 2152 (1998) arXiv:quant-ph/9802018 DOI
- [105]
- O. Moussa, J. Baugh, C. A. Ryan, and R. Laflamme, “Demonstration of Sufficient Control for Two Rounds of Quantum Error Correction in a Solid State Ensemble Quantum Information Processor”, Physical Review Letters 107, (2011) arXiv:1108.4842 DOI
- [106]
- J. Zhang, D. Gangloff, O. Moussa, and R. Laflamme, “Experimental quantum error correction with high fidelity”, Physical Review A 84, (2011) arXiv:1109.4821 DOI
- [107]
- J. Chiaverini et al., “Realization of quantum error correction”, Nature 432, 602 (2004) DOI
- [108]
- P. Schindler, J. T. Barreiro, T. Monz, V. Nebendahl, D. Nigg, M. Chwalla, M. Hennrich, and R. Blatt, “Experimental Repetitive Quantum Error Correction”, Science 332, 1059 (2011) DOI
- [109]
- S. A. Moses et al., “A Race-Track Trapped-Ion Quantum Processor”, Physical Review X 13, (2023) arXiv:2305.03828 DOI
- [110]
- L. Postler, F. Butt, I. Pogorelov, C. D. Marciniak, S. Heußen, R. Blatt, P. Schindler, M. Rispler, M. Müller, and T. Monz, “Demonstration of fault-tolerant Steane quantum error correction”, (2023) arXiv:2312.09745
- [111]
- L. DiCarlo, M. D. Reed, L. Sun, B. R. Johnson, J. M. Chow, J. M. Gambetta, L. Frunzio, S. M. Girvin, M. H. Devoret, and R. J. Schoelkopf, “Preparation and measurement of three-qubit entanglement in a superconducting circuit”, Nature 467, 574 (2010) arXiv:1004.4324 DOI
- [112]
- M. D. Reed, L. DiCarlo, S. E. Nigg, L. Sun, L. Frunzio, S. M. Girvin, and R. J. Schoelkopf, “Realization of three-qubit quantum error correction with superconducting circuits”, Nature 482, 382 (2012) arXiv:1109.4948 DOI
- [113]
- D. Ristè, S. Poletto, M.-Z. Huang, A. Bruno, V. Vesterinen, O.-P. Saira, and L. DiCarlo, “Detecting bit-flip errors in a logical qubit using stabilizer measurements”, Nature Communications 6, (2015) arXiv:1411.5542 DOI
- [114]
- J. Cramer, N. Kalb, M. A. Rol, B. Hensen, M. S. Blok, M. Markham, D. J. Twitchen, R. Hanson, and T. H. Taminiau, “Repeated quantum error correction on a continuously encoded qubit by real-time feedback”, Nature Communications 7, (2016) arXiv:1508.01388 DOI
- [115]
- J. R. Wootton and D. Loss, “Repetition code of 15 qubits”, Physical Review A 97, (2018) arXiv:1709.00990 DOI
- [116]
- J. R. Wootton, “Benchmarking near-term devices with quantum error correction”, Quantum Science and Technology 5, 044004 (2020) arXiv:2004.11037 DOI
- [117]
- J. Kelly et al., “State preservation by repetitive error detection in a superconducting quantum circuit”, Nature 519, 66 (2015) arXiv:1411.7403 DOI
- [118]
- “Exponential suppression of bit or phase errors with cyclic error correction”, Nature 595, 383 (2021) arXiv:2102.06132 DOI
- [119]
- R. Acharya et al., “Suppressing quantum errors by scaling a surface code logical qubit”, (2022) arXiv:2207.06431
- [120]
- K. C. Miao et al., “Overcoming leakage in quantum error correction”, Nature Physics 19, 1780 (2023) arXiv:2211.04728 DOI
- [121]
- R. Acharya et al., “Quantum error correction below the surface code threshold”, (2024) arXiv:2408.13687
- [122]
- E. H. Chen et al., “Nishimori transition across the error threshold for constant-depth quantum circuits”, Nature Physics (2024) arXiv:2309.02863 DOI
- [123]
- H. Liao, G. S. Hartnett, A. Kakkar, A. Tan, M. Hush, P. S. Mundada, M. J. Biercuk, and Y. Baum, “Achieving computational gains with quantum error correction primitives: Generation of long-range entanglement enhanced by error detection”, (2024) arXiv:2411.14638
- [124]
- W. P. Livingston, M. S. Blok, E. Flurin, J. Dressel, A. N. Jordan, and I. Siddiqi, “Experimental demonstration of continuous quantum error correction”, Nature Communications 13, (2022) arXiv:2107.11398 DOI
- [125]
- K. Takeda, A. Noiri, T. Nakajima, T. Kobayashi, and S. Tarucha, “Quantum error correction with silicon spin qubits”, Nature 608, 682 (2022) arXiv:2201.08581 DOI
- [126]
- F. van Riggelen, W. I. L. Lawrie, M. Russ, N. W. Hendrickx, A. Sammak, M. Rispler, B. M. Terhal, G. Scappucci, and M. Veldhorst, “Phase flip code with semiconductor spin qubits”, (2022) arXiv:2202.11530
- [127]
- G. Waldherr et al., “Quantum error correction in a solid-state hybrid spin register”, Nature 506, 204 (2014) arXiv:1309.6424 DOI
- [128]
- T. Nakazato, R. Reyes, N. Imaike, K. Matsuda, K. Tsurumoto, Y. Sekiguchi, and H. Kosaka, “Quantum error correction of spin quantum memories in diamond under a zero magnetic field”, Communications Physics 5, (2022) DOI
- [129]
- T. H. Taminiau, J. Cramer, T. van der Sar, V. V. Dobrovitski, and R. Hanson, “Universal control and error correction in multi-qubit spin registers in diamond”, Nature Nanotechnology 9, 171 (2014) arXiv:1309.5452 DOI
- [130]
- S. P. Jordan, E. Farhi, and P. W. Shor, “Error-correcting codes for adiabatic quantum computation”, Physical Review A 74, (2006) arXiv:quant-ph/0512170 DOI
- [131]
- K. L. Pudenz, T. Albash, and D. A. Lidar, “Error-corrected quantum annealing with hundreds of qubits”, Nature Communications 5, (2014) arXiv:1307.8190 DOI
- [132]
- K. L. Pudenz, T. Albash, and D. A. Lidar, “Quantum annealing correction for random Ising problems”, Physical Review A 91, (2015) arXiv:1408.4382 DOI
- [133]
- G. Alagic, Y. Dulek, C. Schaffner, and F. Speelman, “Quantum Fully Homomorphic Encryption with Verification”, Lecture Notes in Computer Science 438 (2017) arXiv:1708.09156 DOI
- [134]
- A. Coladangelo, J. Liu, Q. Liu, and M. Zhandry, “Hidden Cosets and Applications to Unclonable Cryptography”, (2022) arXiv:2107.05692
- [135]
- R. J. Chapman, A. Karim, Z. Huang, S. T. Flammia, M. Tomamichel, and A. Peruzzo, “Beating the classical limits of information transmission using a quantum decoder”, Physical Review A 97, (2018) arXiv:1704.07036 DOI
- [136]
- J. Zhang, M. Grassl, B. Zeng, and R. Laflamme, “Experimental implementation of a codeword-stabilized quantum code”, Physical Review A 85, (2012) arXiv:1111.5445 DOI
- [137]
- C. Flühmann, T. L. Nguyen, M. Marinelli, V. Negnevitsky, K. Mehta, and J. P. Home, “Encoding a qubit in a trapped-ion mechanical oscillator”, Nature 566, 513 (2019) arXiv:1807.01033 DOI
- [138]
- C. Flühmann and J. P. Home, “Direct Characteristic-Function Tomography of Quantum States of the Trapped-Ion Motional Oscillator”, Physical Review Letters 125, (2020) arXiv:1907.06478 DOI
- [139]
- B. de Neeve, T. L. Nguyen, T. Behrle, and J. Home, “Error correction of a logical grid state qubit by dissipative pumping”, (2020) arXiv:2010.09681
- [140]
- V. G. Matsos, C. H. Valahu, M. J. Millican, T. Navickas, X. C. Kolesnikow, M. J. Biercuk, and T. R. Tan, “Universal Quantum Gate Set for Gottesman-Kitaev-Preskill Logical Qubits”, (2024) arXiv:2409.05455
- [141]
- D. Lachance-Quirion et al., “Autonomous quantum error correction of Gottesman-Kitaev-Preskill states”, (2023) arXiv:2310.11400
- [142]
- B. L. Brock, S. Singh, A. Eickbusch, V. V. Sivak, A. Z. Ding, L. Frunzio, S. M. Girvin, and M. H. Devoret, “Quantum Error Correction of Qudits Beyond Break-even”, (2024) arXiv:2409.15065
- [143]
- S. Konno et al., “Logical states for fault-tolerant quantum computation with propagating light”, Science 383, 289 (2024) arXiv:2309.02306 DOI
- [144]
- N. Fabre et al., “Generation of a time-frequency grid state with integrated biphoton frequency combs”, Physical Review A 102, (2020) arXiv:1904.01351 DOI
- [145]
- É. Descamps, A. Keller, and P. Milman, “Gottesman-Kitaev-Preskill encoding in continuous modal variables of single photons”, (2024) arXiv:2310.12618
- [146]
- P. S. Rodriguez et al., “Experimental Demonstration of Logical Magic State Distillation”, (2024) arXiv:2412.15165
- [147]
- X. Pan, J. Schwinger, N.-N. Huang, P. Song, W. Chua, F. Hanamura, A. Joshi, F. Valadares, R. Filip, and Y. Y. Gao, “Protecting the quantum interference of cat states by phase-space compression”, (2022) arXiv:2212.01271
- [148]
- K. M. Schreiter, A. Pasieka, R. Kaltenbaek, K. J. Resch, and D. W. Kribs, “Optical implementation of a unitarily correctable code”, Physical Review A 80, (2009) arXiv:0909.1584 DOI
- [149]
- S. Krinner et al., “Realizing repeated quantum error correction in a distance-three surface code”, Nature 605, 669 (2022) arXiv:2112.03708 DOI
- [150]
- Y. Zhao et al., “Realization of an Error-Correcting Surface Code with Superconducting Qubits”, Physical Review Letters 129, (2022) arXiv:2112.13505 DOI
- [151]
- L. Frunzio and S. Singh, “Error-Correcting Surface Codes Get Experimental Vetting”, Physics 15, (2022) DOI
- [152]
- Y. Ye et al., “Logical Magic State Preparation with Fidelity Beyond the Distillation Threshold on a Superconducting Quantum Processor”, (2023) arXiv:2305.15972
- [153]
- D. Bluvstein et al., “A quantum processor based on coherent transport of entangled atom arrays”, Nature 604, 451 (2022) arXiv:2112.03923 DOI
- [154]
- S. Xu et al., “Digital Simulation of Projective Non-Abelian Anyons with 68 Superconducting Qubits”, Chinese Physics Letters 40, 060301 (2023) arXiv:2211.09802 DOI
- [155]
- S. Burton, E. Durso-Sabina, and N. C. Brown, “Genons, Double Covers and Fault-tolerant Clifford Gates”, (2024) arXiv:2406.09951
- [156]
- Z. Leghtas et al., “Confining the state of light to a quantum manifold by engineered two-photon loss”, Science 347, 853 (2015) arXiv:1412.4633 DOI
- [157]
- S. Touzard et al., “Coherent Oscillations inside a Quantum Manifold Stabilized by Dissipation”, Physical Review X 8, (2018) arXiv:1705.02401 DOI
- [158]
- A. Grimm, N. E. Frattini, S. Puri, S. O. Mundhada, S. Touzard, M. Mirrahimi, S. M. Girvin, S. Shankar, and M. H. Devoret, “Stabilization and operation of a Kerr-cat qubit”, Nature 584, 205 (2020) arXiv:1907.12131 DOI
- [159]
- R. Lescanne, M. Villiers, T. Peronnin, A. Sarlette, M. Delbecq, B. Huard, T. Kontos, M. Mirrahimi, and Z. Leghtas, “Exponential suppression of bit-flips in a qubit encoded in an oscillator”, Nature Physics 16, 509 (2020) arXiv:1907.11729 DOI
- [160]
- C. Berdou et al., “One Hundred Second Bit-Flip Time in a Two-Photon Dissipative Oscillator”, PRX Quantum 4, (2023) arXiv:2204.09128 DOI
- [161]
- U. Réglade et al., “Quantum control of a cat qubit with bit-flip times exceeding ten seconds”, Nature 629, 778 (2024) arXiv:2307.06617 DOI
- [162]
- A. Marquet et al., “Autoparametric Resonance Extending the Bit-Flip Time of a Cat Qubit up to 0.3 s”, Physical Review X 14, (2024) arXiv:2307.06761 DOI
- [163]
- V. V. Albert, C. Shu, S. Krastanov, C. Shen, R.-B. Liu, Z.-B. Yang, R. J. Schoelkopf, M. Mirrahimi, M. H. Devoret, and L. Jiang, “Holonomic Quantum Control with Continuous Variable Systems”, Physical Review Letters 116, (2016) arXiv:1503.00194 DOI
- [164]
- A. Hajr et al., “High-Coherence Kerr-cat qubit in 2D architecture”, (2024) arXiv:2404.16697
- [165]
- N. E. Frattini et al., “Observation of Pairwise Level Degeneracies and the Quantum Regime of the Arrhenius Law in a Double-Well Parametric Oscillator”, Physical Review X 14, (2024) arXiv:2209.03934 DOI
- [166]
- H. Putterman et al., “Preserving phase coherence and linearity in cat qubits with exponential bit-flip suppression”, (2024) arXiv:2409.17556
- [167]
- J. M. Gertler, B. Baker, J. Li, S. Shirol, J. Koch, and C. Wang, “Protecting a bosonic qubit with autonomous quantum error correction”, Nature 590, 243 (2021) arXiv:2004.09322 DOI
- [168]
- Z. Li, T. Roy, D. R. Perez, K.-H. Lee, E. Kapit, and D. I. Schuster, “Autonomous error correction of a single logical qubit using two transmons”, (2023) arXiv:2302.06707
- [169]
- T. I. Andersen et al., “Non-Abelian braiding of graph vertices in a superconducting processor”, (2023) arXiv:2210.10255
- [170]
- D. Bluvstein et al., “Logical quantum processor based on reconfigurable atom arrays”, Nature 626, 58 (2023) arXiv:2312.03982 DOI
- [171]
- A. Gyenis, P. S. Mundada, A. Di Paolo, T. M. Hazard, X. You, D. I. Schuster, J. Koch, A. Blais, and A. A. Houck, “Experimental Realization of a Protected Superconducting Circuit Derived from the 0 – π Qubit”, PRX Quantum 2, (2021) arXiv:1910.07542 DOI
- [172]
- I. Pogorelov, F. Butt, L. Postler, C. D. Marciniak, P. Schindler, M. Müller, and T. Monz, “Experimental fault-tolerant code switching”, (2024) arXiv:2403.13732
- [173]
- A. Paetznick et al., “Demonstration of logical qubits and repeated error correction with better-than-physical error rates”, (2024) arXiv:2404.02280
- [174]
- B. W. Reichardt et al., “Demonstration of quantum computation and error correction with a tesseract code”, (2024) arXiv:2409.04628
- [175]
- C. N. Self, M. Benedetti, and D. Amaro, “Protecting expressive circuits with a quantum error detection code”, Nature Physics 20, 219 (2024) arXiv:2211.06703 DOI
- [176]
- Matt. J. Bedalov et al., “Fault-Tolerant Operation and Materials Science with Neutral Atom Logical Qubits”, (2024) arXiv:2412.07670
- [177]
- C.-Y. Lu, W.-B. Gao, J. Zhang, X.-Q. Zhou, T. Yang, and J.-W. Pan, “Experimental quantum coding against qubit loss error”, Proceedings of the National Academy of Sciences 105, 11050 (2008) arXiv:0804.2268 DOI
- [178]
- B. A. Bell, D. A. Herrera-Martí, M. S. Tame, D. Markham, W. J. Wadsworth, and J. G. Rarity, “Experimental demonstration of a graph state quantum error-correction code”, Nature Communications 5, (2014) arXiv:1404.5498 DOI
- [179]
- N. M. Linke, M. Gutierrez, K. A. Landsman, C. Figgatt, S. Debnath, K. R. Brown, and C. Monroe, “Fault-tolerant quantum error detection”, Science Advances 3, (2017) arXiv:1611.06946 DOI
- [180]
- Quantum Information and Computation 18, (2018) arXiv:1705.08957 DOI
- [181]
- R. Harper and S. T. Flammia, “Fault-Tolerant Logical Gates in the IBM Quantum Experience”, Physical Review Letters 122, (2019) arXiv:1806.02359 DOI
- [182]
- C. K. Andersen, A. Remm, S. Lazar, S. Krinner, N. Lacroix, G. J. Norris, M. Gabureac, C. Eichler, and A. Wallraff, “Repeated quantum error detection in a surface code”, Nature Physics 16, 875 (2020) arXiv:1912.09410 DOI
- [183]
- A. Erhard et al., “Entangling logical qubits with lattice surgery”, Nature 589, 220 (2021) arXiv:2006.03071 DOI
- [184]
- J. F. Marques et al., “Logical-qubit operations in an error-detecting surface code”, Nature Physics 18, 80 (2021) arXiv:2102.13071 DOI
- [185]
- R. S. Gupta et al., “Encoding a magic state with beyond break-even fidelity”, Nature 625, 259 (2024) arXiv:2305.13581 DOI
- [186]
- J. Roffe, D. Headley, N. Chancellor, D. Horsman, and V. Kendon, “Protecting quantum memories using coherent parity check codes”, Quantum Science and Technology 3, 035010 (2018) arXiv:1709.01866 DOI
- [187]
- B. Barber et al., “A real-time, scalable, fast and highly resource efficient decoder for a quantum computer”, (2024) arXiv:2309.05558
- [188]
- L. Caune et al., “Demonstrating real-time and low-latency quantum error correction with superconducting qubits”, (2024) arXiv:2410.05202
- [189]
- B. W. Reichardt et al., “Logical computation demonstrated with a neutral atom quantum processor”, (2024) arXiv:2411.11822
- [190]
- D. Gottesman, “Quantum fault tolerance in small experiments”, (2016) arXiv:1610.03507
- [191]
- K. Yamamoto, S. Duffield, Y. Kikuchi, and D. Muñoz Ramo, “Demonstrating Bayesian quantum phase estimation with quantum error detection”, Physical Review Research 6, (2024) arXiv:2306.16608 DOI
- [192]
- D. Nigg, M. Müller, E. A. Martinez, P. Schindler, M. Hennrich, T. Monz, M. A. Martin-Delgado, and R. Blatt, “Quantum computations on a topologically encoded qubit”, Science 345, 302 (2014) arXiv:1403.5426 DOI
- [193]
- C. Ryan-Anderson et al., “Realization of real-time fault-tolerant quantum error correction”, (2021) arXiv:2107.07505
- [194]
- P. Ball, “Real-Time Error Correction for Quantum Computing”, Physics 14, (2021) DOI
- [195]
- L. Postler et al., “Demonstration of fault-tolerant universal quantum gate operations”, Nature 605, 675 (2022) arXiv:2111.12654 DOI
- [196]
- K. Mayer et al., “Benchmarking logical three-qubit quantum Fourier transform encoded in the Steane code on a trapped-ion quantum computer”, (2024) arXiv:2404.08616
- [197]
- C. Ryan-Anderson et al., “High-fidelity and Fault-tolerant Teleportation of a Logical Qubit using Transversal Gates and Lattice Surgery on a Trapped-ion Quantum Computer”, (2024) arXiv:2404.16728
- [198]
- D. Miller et al., “Experimental measurement and a physical interpretation of quantum shadow enumerators”, (2024) arXiv:2408.16914
- [199]
- Y. Wang et al., “Fault-tolerant one-bit addition with the smallest interesting color code”, Science Advances 10, (2024) arXiv:2309.09893 DOI
- [200]
- D. Honciuc Menendez, A. Ray, and M. Vasmer, “Implementing fault-tolerant non-Clifford gates using the [[8,3,2]] color code”, Physical Review A 109, (2024) arXiv:2309.08663 DOI
- [201]
- L. Egan et al., “Fault-Tolerant Operation of a Quantum Error-Correction Code”, (2021) arXiv:2009.11482
- [202]
- D. M. Debroy, L. Egan, C. Noel, A. Risinger, D. Zhu, D. Biswas, M. Cetina, C. Monroe, and K. R. Brown, “Optimizing Stabilizer Parities for Improved Logical Qubit Memories”, Physical Review Letters 127, (2021) arXiv:2105.05068 DOI
- [203]
- Y.-H. Luo et al., “Quantum teleportation of physical qubits into logical code spaces”, Proceedings of the National Academy of Sciences 118, (2021) arXiv:2009.06242 DOI
- [204]
- R. Zhang, L.-Z. Liu, Z.-D. Li, Y.-Y. Fei, X.-F. Yin, L. Li, N.-L. Liu, Y. Mao, Y.-A. Chen, and J.-W. Pan, “Loss-tolerant all-photonic quantum repeater with generalized Shor code”, Optica 9, 152 (2022) arXiv:2203.07979 DOI
- [205]
- T. Aoki, G. Takahashi, T. Kajiya, J. Yoshikawa, S. L. Braunstein, P. van Loock, and A. Furusawa, “Quantum error correction beyond qubits”, (2008) arXiv:0811.3734