Group GKP code[1]

Description

Group-based quantum code whose construction is based on nested subgroups \(H\subset K \subset G\). Logical subspace is spanned by basis states that are equal superpositions of elements of cosets of \(H\) in \(K\), and can be finite- or infinite-dimensional.

The group GKP code was originally formulated as an extension of the GKP code construction, and has turned out to encompass a wide variety of codes, tabulated in Table I.

Space

\(G\)

\(H\)

Related code

\(n\) qubits

\(\mathbb{Z}_2^n\)

\(\mathbb{Z}_2^m\)

qubit CSS

\(n\) modular qudits

\(\mathbb{Z}_q^n\)

\(\mathbb{Z}_q^m\)

modular-qudit CSS

\(n\) modes

\( \mathbb{R}^n \)

\( \mathbb{R}^m \)

analog stabilizer

\(n\) modes

\( \mathbb{R}^n \)

\( \mathbb{Z}^n \)

multimode GKP

\(n\) modes

\( \mathbb{R}^n \)

\( \mathbb{Z}^{m<n} \)

GKP-stabilizer

planar rotor

\(U(1)\)

\(\mathbb{Z}_n\)

rotor GKP

rigid body

\(SO(3)\)

point group

molecular

Table I: Special cases of group GKP codes

Protection

Protects against generalized bit-flip errors \(g\in G\) that are inside the fundamental domain of \(G/K\). Protection against phase-flip errors determined by branching rules of irreps of \(G\) into those of \(K\), and further into those of \(H\).

Transversal Gates

Group-GKP codes corresponding to the \(G^{k_1} \subseteq G^{ k_2} \subset G^{n}\) group construction admit \(X\)-type transversal Pauli gates representing \(G\) [2].

Parent

Children

Cousins

  • Bosonic stabilizer code — The group-GKP construction encompasses all bosonic CSS codes. A singlemode qubit GKP code corresponds to the \(2\mathbb{Z}\subset\mathbb{Z}\subset\mathbb{R}\) group construction, and multimode GKP codes can be similarly described. An \([[n,k,d]]_{\mathbb{R}}\) analog stabilizer code corresponds to the \(\mathbb{R}^{ k_1} \subseteq \mathbb{R}^{ k_2} \subset \mathbb{R}^{n}\) group construction, where \(k=k_2/k_1\). GKP stabilizer codes for \(n\) modes correspond to subgroups \(\mathbb{Z}^m\) for \(m<n\).
  • Calderbank-Shor-Steane (CSS) stabilizer code — An \(n\)-qubit CSS code corresponds to the \(C_1^\perp \subseteq C_2 \subset \mathbb{Z}_2^{n}\) group construction.
  • Modular-qudit CSS code — An \(n\) modular-qubit CSS code corresponds to the \(\mathbb{Z}_q^{k_1} \subseteq \mathbb{Z}_q^{k_2} \subset \mathbb{Z}_q^{n}\) group construction, where \(k=k_2/k_1\).
  • Rotor GKP code — Rotor GKP codes correspond to the \(\mathbb{Z}_{k_1} \subseteq \mathbb{Z}_{k_2} \subset U(1)\) group construction, where \(k=k_2/k_1\).
  • Covariant code — Group-GKP codes corresponding to the \(G^{k_1} \subseteq G^{k_2} \subset G^{n}\) group construction admit \(X\)-type transversal Pauli gates that represent the group \(G\), and are thus \(G\)-covariant [2].
  • Linear code over \(G\)

References

[1]
V. V. Albert, J. P. Covey, and J. Preskill, “Robust Encoding of a Qubit in a Molecule”, Physical Review X 10, (2020). DOI; 1911.00099
[2]
P. Faist et al., “Continuous Symmetries and Approximate Quantum Error Correction”, Physical Review X 10, (2020). DOI; 1902.07714
[3]
Victor V. Albert et al., “Spin chains, defects, and quantum wires for the quantum-double edge”. 2111.12096
Page edit log

Zoo code information

Internal code ID: group_gkp

Your contribution is welcome!

on github.com (edit & pull request)

edit on this site

Zoo Code ID: group_gkp

Cite as:
“Group GKP code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/group_gkp
BibTeX:
@incollection{eczoo_group_gkp, title={Group GKP code}, booktitle={The Error Correction Zoo}, year={2022}, editor={Albert, Victor V. and Faist, Philippe}, url={https://errorcorrectionzoo.org/c/group_gkp} }
Share via:
Twitter |  | E-mail
Permanent link:
https://errorcorrectionzoo.org/c/group_gkp

Cite as:

“Group GKP code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/group_gkp

Github: https://github.com/errorcorrectionzoo/eczoo_data/tree/main/codes/quantum/groups/group_gkp.yml.