Group GKP code[1]


Group-based quantum code whose construction is based on nested subgroups \(H\subset K \subset G\). Logical subspace is spanned by basis states that are equal superpositions of elements of cosets of \(H\) in \(K\), and can be finite- or infinite-dimensional.

The group GKP code was originally formulated as an extension of the GKP code construction, and has turned out to encompass a wide variety of codes, tabulated in Table I.




Related code

\(n\) qubits



qubit CSS

\(n\) modular qudits



modular-qudit CSS

\(n\) modes

\( \mathbb{R}^n \)

\( \mathbb{R}^m \)

analog stabilizer

\(n\) modes

\( \mathbb{R}^n \)

\( \mathbb{Z}^n \)

multimode GKP

\(n\) modes

\( \mathbb{R}^n \)

\( \mathbb{Z}^{m<n} \)


planar rotor



rotor GKP

rigid body


point group


Table I: Special cases of group GKP codes


Protects against generalized bit-flip errors \(g\in G\) that are inside the fundamental domain of \(G/K\). Protection against phase-flip errors determined by branching rules of irreps of \(G\) into those of \(K\), and further into those of \(H\).

Transversal Gates

Group-GKP codes corresponding to the \(G^{k_1} \subseteq G^{ k_2} \subset G^{n}\) group construction admit \(X\)-type transversal Pauli gates representing \(G\) [2].


Cryptographic applications stemming from the monogamy of entanglement of group GKP code and error words [3].




  • Bosonic stabilizer code — The group-GKP construction encompasses all bosonic CSS codes. A singlemode qubit GKP code corresponds to the \(2\mathbb{Z}\subset\mathbb{Z}\subset\mathbb{R}\) group construction, and multimode GKP codes can be similarly described. An \([[n,k,d]]_{\mathbb{R}}\) analog stabilizer code corresponds to the \(\mathbb{R}^{ k_1} \subseteq \mathbb{R}^{ k_2} \subset \mathbb{R}^{n}\) group construction, where \(k=k_2/k_1\). GKP stabilizer codes for \(n\) modes correspond to subgroups \(\mathbb{Z}^m\) for \(m<n\).
  • Calderbank-Shor-Steane (CSS) stabilizer code — An \(n\)-qubit CSS code corresponds to the \(C_1^\perp \subseteq C_2 \subset \mathbb{Z}_2^{n}\) group construction.
  • Modular-qudit CSS code — An \(n\) modular-qubit CSS code corresponds to the \(\mathbb{Z}_q^{k_1} \subseteq \mathbb{Z}_q^{k_2} \subset \mathbb{Z}_q^{n}\) group construction, where \(k=k_2/k_1\).
  • Rotor GKP code — Rotor GKP codes correspond to the \(\mathbb{Z}_{k_1} \subseteq \mathbb{Z}_{k_2} \subset U(1)\) group construction, where \(k=k_2/k_1\).
  • Linear code over \(G\)
  • Covariant code — Group-GKP codes corresponding to the \(G^{k_1} \subseteq G^{k_2} \subset G^{n}\) group construction admit \(X\)-type transversal Pauli gates that represent the group \(G\), and are thus \(G\)-covariant [2].


V. V. Albert, J. P. Covey, and J. Preskill, “Robust Encoding of a Qubit in a Molecule”, Physical Review X 10, (2020) arXiv:1911.00099 DOI
P. Faist et al., “Continuous Symmetries and Approximate Quantum Error Correction”, Physical Review X 10, (2020) arXiv:1902.07714 DOI
E. Culf, T. Vidick, and V. V. Albert, “Group coset monogamy games and an application to device-independent continuous-variable QKD”, (2022) arXiv:2212.03935
V. V. Albert et al., “Spin chains, defects, and quantum wires for the quantum-double edge”, (2021) arXiv:2111.12096
Page edit log

Your contribution is welcome!

on (edit & pull request)

edit on this site

Zoo Code ID: group_gkp

Cite as:
“Group GKP code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022.
@incollection{eczoo_group_gkp, title={Group GKP code}, booktitle={The Error Correction Zoo}, year={2022}, editor={Albert, Victor V. and Faist, Philippe}, url={} }
Share via:
Twitter | Mastodon |  | E-mail
Permanent link:

Cite as:

“Group GKP code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022.