Group-based quantum code 

This code defines the Group Kingdom

Description

Encodes a logical Hilbert space, finite- or infinite-dimensional, into a physical Hilbert space of \(\ell^2\)-normalizable functions on a second-countable unimodular group. For \(K\)-dimensional logical subspace and for groups \(G^{n}\), can be denoted as \(((n,K))_G\). When the logical subspace is the Hilbert space of \(\ell^2\)-normalizable functions on \(G^{ k}\), can be denoted as \([[n,k]]_G\). Ideal codewords may not be normalizable, depending on whether \(G\) is continuous and/or noncompact, so approximate versions have to be constructed in practice.

Parent

Children

  • Group GKP code
  • Rotor code — Group quantum codes whose physical spaces are constructed using either the group of the integers \(\mathbb{Z}\) or the circle group \(U(1)\) are rotor codes.
  • Twisted quantum double (TQD) code
  • Bosonic code — Group quantum codes whose physical spaces are constructed using the group of the reals \(\mathbb{R}\) under addition are bosonic codes.
  • Modular-qudit code — Group quantum codes whose physical spaces are constructed using modular-integer groups \(\mathbb{Z}_q\) are modular-qudit codes.
  • Galois-qudit code — A Galois qudit for \(q=p^m\) can be decomposed into a Kronecker product of \(m\) modular qudits [1]; see Sec. 5.3 of Ref. [2]. Interpreted this way, Galois-qudit codes are group quantum codes whose physical spaces are constructed using Galois fields \(GF(q)\) as groups.

Cousins

References

[1]
A. Ashikhmin and E. Knill, “Nonbinary quantum stabilizer codes”, IEEE Transactions on Information Theory 47, 3065 (2001) DOI
[2]
A. Niehage, “Quantum Goppa Codes over Hyperelliptic Curves”, (2005) arXiv:quant-ph/0501074
Page edit log

Your contribution is welcome!

on github.com (edit & pull request)

edit on this site

Zoo Code ID: group_quantum

Cite as:
“Group-based quantum code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2021. https://errorcorrectionzoo.org/c/group_quantum
BibTeX:
@incollection{eczoo_group_quantum,
  title={Group-based quantum code},
  booktitle={The Error Correction Zoo},
  year={2021},
  editor={Albert, Victor V. and Faist, Philippe},
  url={https://errorcorrectionzoo.org/c/group_quantum}
}
Share via:
Twitter | Mastodon |  | E-mail
Permanent link:
https://errorcorrectionzoo.org/c/group_quantum

Cite as:

“Group-based quantum code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2021. https://errorcorrectionzoo.org/c/group_quantum

Github: https://github.com/errorcorrectionzoo/eczoo_data/tree/main/codes/quantum/groups/group_quantum.yml.