Description
Encodes logical Hilbert space, finite- or infinite-dimensional, into a physical Hilbert space that contains at least one oscillator (a.k.a. bosonic mode or qumode).
States of a single oscillator correspond to \(L^2\)-normalizable functions on \(\mathbb{R}\) that have finite energy, finite variance, and finite values of all other moments (where the energy operator is defined to be the harmonic oscillator Hamiltonian); such functions form Schwartz space, a subspace of Hilbert space [1]. Ideal codewords may not be normalizable because the space is infinite-dimensional, so approximate versions have to be constructed in practice.
States can be represented by a series via a basis expansion, such as that in the countable basis of Fock states \(|n\rangle\) with \(n\geq 0\). Alternatively, states can be represented as functions over the reals by expanding in a continuous "basis" (more technically, set of tempered distributions in the space dual to Schwartz space), such as the position "basis" \(|y\rangle\) with \(y\in\mathbb{R}\) or the momentum "basis" \(|p\rangle\) with \(p\in\mathbb{R}\). A third option is to use coherent states \(|\alpha\rangle\) with \(\alpha\in\mathbb{C}\), which are eigenstates of the annihilation operator, which correspond to classical electromagnetic signals, and which resolve the identity [2–5]. States can further be represented as functions over the joint position-momentum phase space in the Wigner function formalism [6,7]. GKP states have negative Wigner functions, but the alternative Zak-Gross Wigner function represents them positively [8].
An important subset of states is formed by the Gaussian states, which are in one-to-one correspondence with a (displacement) vector and covariance matrix [9–15]. Pure Gaussian states can be obtained from the vacuum Fock state \(|n=0\rangle\) via a Gaussian unitary transformation (defined below). Any coherent state can be obtained from the vacuum Fock state, itself a coherent state, by a displacement.
Protection
Displacement error basis
An error set relevant to bosonic stabilizer codes is the set of displacement operators, a bosonic analogue of the Pauli string basis for qubit codes.
Displacement operators: For a single mode, its elements are products of exponentials of the mode's position and momentum operators, acting on the mode's position states \(|y\rangle\) for \(y\in\mathbb{R}\) as \begin{align} e^{-iq\hat{p}}\left|y\right\rangle =\left|y+q\right\rangle \,\,\text{ and }\,\,e^{iq\hat{x}}\left|y\right\rangle =e^{iq y}\left|y\right\rangle ~, \tag*{(1)}\end{align} where \(q\in\mathbb{R}\). The former is also called a translation, while the latter is called a modulation in signal processing. For multiple modes, error set elements are tensor products of elements of the single-oscillator error set, characterized by the vector of coefficients \(\xi\in\mathbb{R}^{2n}\).
The displacement error set is a unitary basis for bounded operators on the \(n\)-mode Hilbert space that is Dirac-orthonormal under the Hilbert-Schmidt inner product. Expanding a bounded operator in terms of displacements is called the Fourier-Weyl transform (a.k.a. Fourier-Weyl relation) [17][16; Eq. (4.11)]. For the expansion of Gaussian unitary operations in terms of displacements, see [18; Eq. (7.62)].
There are two definitions of code distance associated with displacements. The definition inherited from qubit codes is the minimum weight of a displacement operator (i.e., number of nonzero entries in \(\xi\)) that implements a nontrivial logical operation in the code. The second definition is the minimum Euclidean distance (i.e., \(\ell^2\)-norm of \(\xi\)) such that the corresponding displacement implements a nontrivial logical operation in the code.
Loss and gain operators
An error set relevant to Fock-state bosonic codes is the set of loss operators associated with the AD channel, a common form of physical noise in bosonic systems. For a single mode, loss operators are proportional to powers of the mode's annihilation operator \(a=(\hat{x}+i\hat{p})/\sqrt{2}\), where \(\hat x\) (\(\hat p\)) is the mode's position (momentum) operator, and with the power signifying the number of particles lost during the error. For multiple modes, error set elements are tensor products of elements of the single-mode error set.
Number-phase operators
An related error set is the set of powers of the Susskind–Glogower phase operator \(\frac{1}{\sqrt{a a^\dagger}} a\) and its adjoint [19–21] along with Fock-space rotations generated by the occupation number operator \(a^\dagger a\). These can also be obtained from qudit Pauli matrices through a limiting procedure [21] and allow one to expand trace-class operators despite not forming an orthonormal set [1]. These operators are correspong to the number-phase interpretation, a polar-like decomposition of a single mode, complementing the cartesian-like decomposition in terms of position and momentum displacements.
Rate
The quantum capacity of the AD channel [22] and the dephasing noise channel [23] are both known. The capacity of the displacement noise channel, the quantum analogue of AGWN, has been bounded using GKP codes [24,25]. Exact two-way assisted capacities have been obtained for the AD channels and quantum limited amplifiers in what is known as the PLOB bound [26]. These are examples of Gaussian channels, i.e., channels that map Gaussian states to Gaussian states [27–34]. Bounds exist on the two-way quantum and secret-key capacities for some prominent Gaussian channels [35–44]. Non-Gaussian channel capacities can be bounded for single [45] and multiple [46; Lemma 14] modes.Gates
Displacement operations form a group called the Heisenberg-Weyl group, the oscillator analogue to the Pauli group. Analogues of (non-Pauli) Clifford-group transformations are the Gaussian unitary transformations (a.k.a. symplectic, Bogoliubov-Valatin, or linear canonical transformations) [13,47,48], which are unitaries generated by quadratic polynomials in positions and momenta. The Gaussian unitary transformation group permutes displacement operators amongst themselves, and, up to any phases, is equivalent to the symplectic group \(Sp(2n,\mathbb{R})\).Computing using Gaussian states and Gaussian unitaries only can be efficiently simulated on a classical computer [49–51]. This remains true even if superpositions of Gaussian states are considered [52,53], but is no longer the case when the number of modes scales exponentially [54]. A cubic phase gate is required to make a universal gate set on the oscillator [10,55]; other gates are possible, but cubic or higher versions of squeezing are not well defined [56]. See Ref. [57] for bosonic computational complexity classes.Controllability of bosonic states has been proven when the normalizable state space is restricted to Schwartz space [58].Measurements can be performed by homodyne, heterodyne, and generalized homodyne measurements [59].The number-phase interpretation allows for the mapping of rotor Clifford gates into the oscillator, some of which become non-unitary (e.g., conditional occupation number addition) [60].ZX calculus has been extended to bosonic codes for both Gaussian operators [61] and Fock-state based operators [62]. An earlier graphical calculus exists for Gaussian pure states [63].Circuits can be decomposed into a series of primitives such as quantum lattice gates [64].Notes
For an introduction to continuous-variable quantum systems, see reviews [1,65–70] and books [16,71,72].See video tutorial by V. V. Albert.Bosonic states are typically represented with the assumption that a common phase reference exists, and the superselection rule compliant (SSRC) framework yields expressions without this assumption [73–78].Cousins
- Analog code— Bosonic codes are quantum version of analog codes.
- \(t\)-design— Gaussian states, under a particular measure, do not form rigged two-designs [79].
- Bosonic c-q code— Bosonic c-q codes are bosonic codes designed to transmit classical information.
- EA bosonic code— EA bosonic codes utilize additional ancillary modes in a pre-shared entangled state, but reduce to ordinary bosonic codes when said modes are interpreted as noiseless physical modes.
- Fermion code— Bosonic (fermionic) codes are associated with bosonic (fermionic) degrees of freedom.
Member of code lists
Primary Hierarchy
References
- [1]
- V. V. Albert, “Bosonic coding: introduction and use cases”, (2022) arXiv:2211.05714
- [2]
- A. M. Perelomov, “On the completeness of a system of coherent states”, (2002) arXiv:math-ph/0210005
- [3]
- V. Bargmann, P. Butera, L. Girardello, and J. R. Klauder, “On the completeness of the coherent states”, Reports on Mathematical Physics 2, 221 (1971) DOI
- [4]
- H. Bacry, A. Grossmann, and J. Zak, “Proof of completeness of lattice states in thekqrepresentation”, Physical Review B 12, 1118 (1975) DOI
- [5]
- M. Boon and J. Zak, “Discrete coherent states on the von Neumann lattice”, Physical Review B 18, 6744 (1978) DOI
- [6]
- E. Wigner, “On the Quantum Correction For Thermodynamic Equilibrium”, Physical Review 40, 749 (1932) DOI
- [7]
- A. Royer, “Wigner function as the expectation value of a parity operator”, Physical Review A 15, 449 (1977) DOI
- [8]
- J. Davis, N. Fabre, and U. Chabaud, “Identifying quantum resources in encoded computations”, (2024) arXiv:2407.18394
- [9]
- R. Simon, E. C. G. Sudarshan, and N. Mukunda, “Gaussian pure states in quantum mechanics and the symplectic group”, Physical Review A 37, 3028 (1988) DOI
- [10]
- S. L. Braunstein and P. van Loock, “Quantum information with continuous variables”, Reviews of Modern Physics 77, 513 (2005) arXiv:quant-ph/0410100 DOI
- [11]
- A. Serafini, O. C. O. Dahlsten, D. Gross, and M. B. Plenio, “Canonical and micro-canonical typical entanglement of continuous variable systems”, Journal of Physics A: Mathematical and Theoretical 40, 9551 (2007) arXiv:quant-ph/0701051 DOI
- [12]
- X. WANG, T. HIROSHIMA, A. TOMITA, and M. HAYASHI, “Quantum information with Gaussian states”, Physics Reports 448, 1 (2007) arXiv:0801.4604 DOI
- [13]
- C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian quantum information”, Reviews of Modern Physics 84, 621 (2012) arXiv:1110.3234 DOI
- [14]
- L. Hackl and E. Bianchi, “Bosonic and fermionic Gaussian states from Kähler structures”, SciPost Physics Core 4, (2021) arXiv:2010.15518 DOI
- [15]
- T. Guaita, L. Hackl, and T. Quella, “Representation theory of Gaussian unitary transformations for bosonic and fermionic systems”, (2024) arXiv:2409.11628
- [16]
- A. Serafini, “Quantum Continuous Variables”, (2017) DOI
- [17]
- K. E. Cahill and R. J. Glauber, “Ordered Expansions in Boson Amplitude Operators”, Physical Review 177, 1857 (1969) DOI
- [18]
- M. de Gosson, Symplectic Geometry and Quantum Mechanics (Birkhäuser Basel, 2006) DOI
- [19]
- L. Susskind and J. Glogower, “Quantum mechanical phase and time operator”, Physics Physique Fizika 1, 49 (1964) DOI
- [20]
- J. Bergou and B.-G. Englert, “Operators of the phase. Fundamentals”, Annals of Physics 209, 479 (1991) DOI
- [21]
- S. D. Bartlett, H. de Guise, and B. C. Sanders, “Quantum encodings in spin systems and harmonic oscillators”, Physical Review A 65, (2002) arXiv:quant-ph/0109066 DOI
- [22]
- M. M. Wolf, D. Pérez-García, and G. Giedke, “Quantum Capacities of Bosonic Channels”, Physical Review Letters 98, (2007) arXiv:quant-ph/0606132 DOI
- [23]
- L. Lami and M. M. Wilde, “Exact solution for the quantum and private capacities of bosonic dephasing channels”, Nature Photonics 17, 525 (2023) arXiv:2205.05736 DOI
- [24]
- J. Harrington and J. Preskill, “Achievable rates for the Gaussian quantum channel”, Physical Review A 64, (2001) arXiv:quant-ph/0105058 DOI
- [25]
- K. Noh, V. V. Albert, and L. Jiang, “Quantum Capacity Bounds of Gaussian Thermal Loss Channels and Achievable Rates With Gottesman-Kitaev-Preskill Codes”, IEEE Transactions on Information Theory 65, 2563 (2019) arXiv:1801.07271 DOI
- [26]
- S. Pirandola, R. Laurenza, C. Ottaviani, and L. Banchi, “Fundamental limits of repeaterless quantum communications”, Nature Communications 8, (2017) arXiv:1510.08863 DOI
- [27]
- B. Demoen, P. Vanheuverzwijn, and A. Verbeure, “Completely positive quasi-free maps of the CCR-algebra”, Reports on Mathematical Physics 15, 27 (1979) DOI
- [28]
- J. Eisert and M. M. Wolf, “Gaussian quantum channels”, (2005) arXiv:quant-ph/0505151
- [29]
- M. M. Wolf, “Not-So-Normal Mode Decomposition”, Physical Review Letters 100, (2008) arXiv:0707.0604 DOI
- [30]
- F. Caruso, J. Eisert, V. Giovannetti, and A. S. Holevo, “Multi-mode bosonic Gaussian channels”, New Journal of Physics 10, 083030 (2008) arXiv:0804.0511 DOI
- [31]
- S. Pirandola, R. García-Patrón, S. L. Braunstein, and S. Lloyd, “Direct and Reverse Secret-Key Capacities of a Quantum Channel”, Physical Review Letters 102, (2009) arXiv:0809.3273 DOI
- [32]
- A. S. Holevo, “The Choi–Jamiolkowski forms of quantum Gaussian channels”, Journal of Mathematical Physics 52, (2011) arXiv:1004.0196 DOI
- [33]
- F. Caruso, J. Eisert, V. Giovannetti, and A. S. Holevo, “Optimal unitary dilation for bosonic Gaussian channels”, Physical Review A 84, (2011) arXiv:1009.1108 DOI
- [34]
- J. S. Ivan, K. K. Sabapathy, and R. Simon, “Operator-sum representation for bosonic Gaussian channels”, Physical Review A 84, (2011) arXiv:1012.4266 DOI
- [35]
- A. S. Holevo and R. F. Werner, “Evaluating capacities of Bosonic Gaussian channels”, (1999) arXiv:quant-ph/9912067
- [36]
- M. Takeoka, S. Guha, and M. M. Wilde, “The Squashed Entanglement of a Quantum Channel”, IEEE Transactions on Information Theory 60, 4987 (2014) arXiv:1310.0129 DOI
- [37]
- M. Takeoka, S. Guha, and M. M. Wilde, “Fundamental rate-loss tradeoff for optical quantum key distribution”, Nature Communications 5, (2014) arXiv:1504.06390 DOI
- [38]
- K. Goodenough, D. Elkouss, and S. Wehner, “Assessing the performance of quantum repeaters for all phase-insensitive Gaussian bosonic channels”, New Journal of Physics 18, 063005 (2016) arXiv:1511.08710 DOI
- [39]
- M. M. Wilde, M. Tomamichel, and M. Berta, “Converse Bounds for Private Communication Over Quantum Channels”, IEEE Transactions on Information Theory 63, 1792 (2017) arXiv:1602.08898 DOI
- [40]
- C. Ottaviani, R. Laurenza, T. P. W. Cope, G. Spedalieri, S. L. Braunstein, and S. Pirandola, “Secret key capacity of the thermal-loss channel: improving the lower bound”, SPIE Proceedings 9996, 999609 (2016) arXiv:1609.02169 DOI
- [41]
- S. Pirandola, S. L. Braunstein, R. Laurenza, C. Ottaviani, T. P. W. Cope, G. Spedalieri, and L. Banchi, “Theory of channel simulation and bounds for private communication”, Quantum Science and Technology 3, 035009 (2018) arXiv:1711.09909 DOI
- [42]
- N. Davis, M. E. Shirokov, and M. M. Wilde, “Energy-constrained two-way assisted private and quantum capacities of quantum channels”, Physical Review A 97, (2018) arXiv:1801.08102 DOI
- [43]
- G. Wang, C. Ottaviani, H. Guo, and S. Pirandola, “Improving the lower bound to the secret-key capacity of the thermal amplifier channel”, The European Physical Journal D 73, (2019) arXiv:1807.05402 DOI
- [44]
- F. A. Mele, L. Lami, and V. Giovannetti, “Maximum tolerable excess noise in CV-QKD and improved lower bound on two-way capacities”, (2023) arXiv:2303.12867
- [45]
- K. Noh, S. M. Girvin, and L. Jiang, “Encoding an Oscillator into Many Oscillators”, Physical Review Letters 125, (2020) arXiv:1903.12615 DOI
- [46]
- J. Wu, A. J. Brady, and Q. Zhuang, “Optimal encoding of oscillators into more oscillators”, Quantum 7, 1082 (2023) arXiv:2212.11970 DOI
- [47]
- M. Moshinsky and C. Quesne, “Linear Canonical Transformations and Their Unitary Representations”, Journal of Mathematical Physics 12, 1772 (1971) DOI
- [48]
- Wagner, M. Unitary transformations in solid state physics. Netherlands.
- [49]
- S. D. Bartlett, B. C. Sanders, S. L. Braunstein, and K. Nemoto, “Efficient Classical Simulation of Continuous Variable Quantum Information Processes”, Physical Review Letters 88, (2002) arXiv:quant-ph/0109047 DOI
- [50]
- V. Veitch, N. Wiebe, C. Ferrie, and J. Emerson, “Efficient simulation scheme for a class of quantum optics experiments with non-negative Wigner representation”, New Journal of Physics 15, 013037 (2013) arXiv:1210.1783 DOI
- [51]
- A. Mari and J. Eisert, “Positive Wigner Functions Render Classical Simulation of Quantum Computation Efficient”, Physical Review Letters 109, (2012) arXiv:1208.3660 DOI
- [52]
- U. Chabaud, G. Ferrini, F. Grosshans, and D. Markham, “Classical simulation of Gaussian quantum circuits with non-Gaussian input states”, Physical Review Research 3, (2021) arXiv:2010.14363 DOI
- [53]
- B. Dias and R. König, “Classical simulation of non-Gaussian bosonic circuits”, Physical Review A 110, (2024) arXiv:2403.19059 DOI
- [54]
- A. Barthe, M. Cerezo, A. T. Sornborger, M. Larocca, and D. García-Martín, “Gate-based quantum simulation of Gaussian bosonic circuits on exponentially many modes”, (2024) arXiv:2407.06290
- [55]
- S. Lloyd and S. L. Braunstein, “Quantum Computation over Continuous Variables”, Physical Review Letters 82, 1784 (1999) arXiv:quant-ph/9810082 DOI
- [56]
- R. A. Fisher, M. M. Nieto, and V. D. Sandberg, “Impossibility of naively generalizing squeezed coherent states”, Physical Review D 29, 1107 (1984) DOI
- [57]
- U. Chabaud, M. Joseph, S. Mehraban, and A. Motamedi, “Bosonic Quantum Computational Complexity”, (2024) arXiv:2410.04274
- [58]
- R.-B. Wu, T.-J. Tarn, and C.-W. Li, “Smooth controllability of infinite-dimensional quantum-mechanical systems”, Physical Review A 73, (2006) arXiv:quant-ph/0505063 DOI
- [59]
- A. I. Lvovsky and M. G. Raymer, “Continuous-variable optical quantum-state tomography”, Reviews of Modern Physics 81, 299 (2009) arXiv:quant-ph/0511044 DOI
- [60]
- Y. Xu, Y. Wang, and V. V. Albert, “Multimode rotation-symmetric bosonic codes from homological rotor codes”, Physical Review A 110, (2024) arXiv:2311.07679 DOI
- [61]
- H. Nagayoshi, W. Asavanant, R. Ide, K. Fukui, A. Sakaguchi, J. Yoshikawa, N. C. Menicucci, and A. Furusawa, “ZX Graphical Calculus for Continuous-Variable Quantum Processes”, (2024) arXiv:2405.07246
- [62]
- R. A. Shaikh, L. Yeh, and S. Gogioso, “The Focked-up ZX Calculus: Picturing Continuous-Variable Quantum Computation”, (2024) arXiv:2406.02905
- [63]
- N. C. Menicucci, S. T. Flammia, and P. van Loock, “Graphical calculus for Gaussian pure states”, Physical Review A 83, (2011) arXiv:1007.0725 DOI
- [64]
- L. Guo, T. Huang, and L. Du, “Engineering Fault-tolerant Bosonic Codes with Quantum Lattice Gates”, (2024) arXiv:2410.17069
- [65]
- C. Fabre and N. Treps, “Modes and states in quantum optics”, Reviews of Modern Physics 92, (2020) arXiv:1912.09321 DOI
- [66]
- B. M. Terhal, J. Conrad, and C. Vuillot, “Towards scalable bosonic quantum error correction”, Quantum Science and Technology 5, 043001 (2020) arXiv:2002.11008 DOI
- [67]
- A. Joshi, K. Noh, and Y. Y. Gao, “Quantum information processing with bosonic qubits in circuit QED”, Quantum Science and Technology 6, 033001 (2021) arXiv:2008.13471 DOI
- [68]
- W. Cai, Y. Ma, W. Wang, C.-L. Zou, and L. Sun, “Bosonic quantum error correction codes in superconducting quantum circuits”, Fundamental Research 1, 50 (2021) arXiv:2010.08699 DOI
- [69]
- K. Noh, “Quantum Computation and Communication in Bosonic Systems”, (2021) arXiv:2103.09445
- [70]
- S. M. Girvin, “Introduction to quantum error correction and fault tolerance”, SciPost Physics Lecture Notes (2023) arXiv:2111.08894 DOI
- [71]
- N. J. Cerf, G. Leuchs, and E. S. Polzik, “Quantum Information with Continuous Variables of Atoms and Light”, (2007) DOI
- [72]
- A. F. Kockum, A. Soro, L. García-Álvarez, P. Vikstål, T. Douce, G. Johansson, and G. Ferrini, “Lecture notes on quantum computing”, (2024) arXiv:2311.08445
- [73]
- Y. Aharonov and L. Susskind, “Charge Superselection Rule”, Physical Review 155, 1428 (1967) DOI
- [74]
- K. Mølmer, “Optical coherence: A convenient fiction”, Physical Review A 55, 3195 (1997) DOI
- [75]
- B. C. Sanders, S. D. Bartlett, T. Rudolph, and P. L. Knight, “Photon-number superselection and the entangled coherent-state representation”, Physical Review A 68, (2003) arXiv:quant-ph/0306076 DOI
- [76]
- S. D. BARTLETT, T. RUDOLPH, and R. W. SPEKKENS, “DIALOGUE CONCERNING TWO VIEWS ON QUANTUM COHERENCE: FACTIST AND FICTIONIST”, International Journal of Quantum Information 04, 17 (2006) arXiv:quant-ph/0507214 DOI
- [77]
- B. C. Sanders, “Review of entangled coherent states”, Journal of Physics A: Mathematical and Theoretical 45, 244002 (2012) arXiv:1112.1778 DOI
- [78]
- E. Descamps, A. Saharyan, A. Chivet, A. Keller, and P. Milman, “Modes, states and superselection rules in quantum optics and quantum information”, (2025) arXiv:2501.03943
- [79]
- R. Blume-Kohout and P. S. Turner, “The Curious Nonexistence of Gaussian 2-Designs”, Communications in Mathematical Physics 326, 755 (2014) arXiv:1110.1042 DOI
Page edit log
- Victor V. Albert (2022-05-08) — most recent
- Victor V. Albert (2021-11-24)
Cite as:
“Bosonic code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/oscillators
Github: https://github.com/errorcorrectionzoo/eczoo_data/edit/main/codes/quantum/oscillators/oscillators.yml.