Coherent-state constellation code 

Description

Qudit-into-oscillator code whose codewords can succinctly be expressed as superpositions of a countable set of coherent states that is called a constellation. Some useful constellations form a group (see gkp, cat or \(2T\)-qutrit codes) while others make up a Gaussian quadrature rule [1,2].

Rate

Coherent-state constellation codes consisting of points from a Gaussian quadrature rule can be concatenated with quantum polar codes to achieve the Gaussian coherent information of the thermal noise channel [1,2].

Parent

Children

Cousins

  • Concatenated bosonic code — Coherent-state constellation codes consisting of points from a Gaussian quadrature rule can be concatenated with quantum polar codes to achieve the Gaussian coherent information of the thermal noise channel [1,2].
  • \(t\)-design — Coherent-state constellation codes consisting of points from a Gaussian quadrature rule can be concatenated with quantum polar codes to achieve the Gaussian coherent information of the thermal noise channel [1,2].
  • Modulation scheme — Coherent-state constellation codes are quantum versions of modulation schemes in that their codewords are superpositions of points in a constellation. Additionally, analog codes that achieve AGWN capacity [5] can be used to develop capacity-achieving concatenations of coherent-state constellation codes with quantum polar codes [1,2].
  • Coherent-state c-q code — Coherent-state c-q codes encode classical alphabets into constellations of coherent states, while coherent-state constellation codes encode quantum information into superpositions of coherent states.

References

[1]
F. Lacerda, J. M. Renes, and V. B. Scholz, “Coherent-state constellations and polar codes for thermal Gaussian channels”, Physical Review A 95, (2017) arXiv:1603.05970 DOI
[2]
F. Lacerda, J. M. Renes, and V. B. Scholz, “Coherent state constellations for Bosonic Gaussian channels”, 2016 IEEE International Symposium on Information Theory (ISIT) (2016) DOI
[3]
D. Gottesman, A. Kitaev, and J. Preskill, “Encoding a qubit in an oscillator”, Physical Review A 64, (2001) arXiv:quant-ph/0008040 DOI
[4]
V. V. Albert et al., “Performance and structure of single-mode bosonic codes”, Physical Review A 97, (2018) arXiv:1708.05010 DOI
[5]
Y. Wu and S. Verdu, “The impact of constellation cardinality on Gaussian channel capacity”, 2010 48th Annual Allerton Conference on Communication, Control, and Computing (Allerton) 620 (2010) DOI
Page edit log

Your contribution is welcome!

on github.com (edit & pull request)— see instructions

edit on this site

Zoo Code ID: coherent_constellation

Cite as:
“Coherent-state constellation code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2023. https://errorcorrectionzoo.org/c/coherent_constellation
BibTeX:
@incollection{eczoo_coherent_constellation, title={Coherent-state constellation code}, booktitle={The Error Correction Zoo}, year={2023}, editor={Albert, Victor V. and Faist, Philippe}, url={https://errorcorrectionzoo.org/c/coherent_constellation} }
Share via:
Twitter | Mastodon |  | E-mail
Permanent link:
https://errorcorrectionzoo.org/c/coherent_constellation

Cite as:

“Coherent-state constellation code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2023. https://errorcorrectionzoo.org/c/coherent_constellation

Github: https://github.com/errorcorrectionzoo/eczoo_data/edit/main/codes/quantum/oscillators/coherent_state/coherent_constellation.yml.