Cat code[1] 


Rotation-symmetric bosonic Fock-state code encoding a \(q\)-dimensional qudit into one oscillator which utilizes a constellation of \(q(S+1)\) coherent states distributed equidistantly around a circle in phase space of radius \(\alpha\).

Codewords for a qubit code (\(q=2\)) consist of a coherent state \(|\alpha\rangle\) projected onto a subspace of Fock state number modulo\(2(S+1)\). The logical state \(|\overline{0}\rangle\) is in the \(\{|0\rangle , |2(S+1)\rangle , |4(S+1)\rangle \cdots \}\) Fock-state subspace, while \(|\overline{1}\rangle\) is in the \(\{|(S+1)\rangle, |3(S+1)\rangle , |5(S+1)\rangle , |7(S+1)\rangle \cdots \}\) subspace.


Due to the spacing between sets of Fock states, the distance between two distinct logical states is \(d=S+1\). Hence, this code is able to detect \(S\)-photon loss error.


Lindbladian-based dissipative encoding utilizing multi-photon generalization of two-photon absorption [25]. Encoding passively protects against modal dephasing, suppressing dephasing noise exponentially with \(|\alpha|^2\) [6].Approximate can states can be prepared using Gaussian operations and photon detectors [7].


Holonomic gates utilizing the Berry phase of coherent states are universal [8].Universal gates in the microwave setting for the \(S=1\) code can be performed using squeezing operators and a rotation based on the Kerr nonlinearity [6].Error-detecting \(CCZ\) and \(cSWAP\) gates for four-component cat code using three-level ancilla [9].


Measuring the Fock-state number modulo \(2S\) can be used to determine if photon loss or excitation errors occurred. For \(S=1\), this is the occupation number parity.


Parity-syndrome measurement tested [10] and implemented for the four-component (\(S=1\)) cat code [11] in a microwave cavity coupled to a superconducting circuit. The latter work [11] is the first to reach break-even error-correction, where the lifetime of a logical qubit is on par with the cavity lifetime, despite protection against dephasing not being implemented. A fault-tolerant version of parity measurement has also been realized [12].




  • Number-phase code — In the limit as \(N,S \to \infty\), phase measurement in the cat code has vanishing variance, just like in a number-phase code [13].
  • Phase-shift keying (PSK) code — PSK (cat) codes are used to transmit classical (quantum) information using (superpositions of) single-mode coherent states distributed on a circle over classical (quantum) channels.
  • Polygon code — The \(q(S+1)\)-component cat coherent-state constellation forms the vertices of a \(q(S+1)\)-gon.
  • PSK c-q code — PSK c-q (cat) codes are used to transmit classical (quantum) information using (superpositions of) single-mode coherent states distributed on a circle over quantum channels.
  • Pair-cat code — Cat (pair-cat) codewords are superpositions of coherent (pair-coherent) states. Many cat-code protocols have analogues for the two-mode pair-cat codes.
  • Binomial code — For a fixed \(S\), binomial codes with \(N \to \infty\) coincide with cat codes as \(\alpha \to \infty\) [14].


Z. Leghtas et al., “Hardware-Efficient Autonomous Quantum Memory Protection”, Physical Review Letters 111, (2013) arXiv:1207.0679 DOI
M. Wolinsky and H. J. Carmichael, “Quantum noise in the parametric oscillator: From squeezed states to coherent-state superpositions”, Physical Review Letters 60, 1836 (1988) DOI
L. Krippner, W. J. Munro, and M. D. Reid, “Transient macroscopic quantum superposition states in degenerate parametric oscillation: Calculations in the large-quantum-noise limit using the positivePrepresentation”, Physical Review A 50, 4330 (1994) DOI
E. E. Hach III and C. C. Gerry, “Generation of mixtures of Schrödinger-cat states from a competitive two-photon process”, Physical Review A 49, 490 (1994) DOI
L. Gilles, B. M. Garraway, and P. L. Knight, “Generation of nonclassical light by dissipative two-photon processes”, Physical Review A 49, 2785 (1994) DOI
M. Mirrahimi et al., “Dynamically protected cat-qubits: a new paradigm for universal quantum computation”, New Journal of Physics 16, 045014 (2014) arXiv:1312.2017 DOI
D. Su, C. R. Myers, and K. K. Sabapathy, “Conversion of Gaussian states to non-Gaussian states using photon-number-resolving detectors”, Physical Review A 100, (2019) arXiv:1902.02323 DOI
V. V. Albert et al., “Holonomic Quantum Control with Continuous Variable Systems”, Physical Review Letters 116, (2016) arXiv:1503.00194 DOI
T. Tsunoda et al., “Error-detectable bosonic entangling gates with a noisy ancilla”, (2022) arXiv:2212.11196
L. Sun et al., “Tracking photon jumps with repeated quantum non-demolition parity measurements”, Nature 511, 444 (2014) arXiv:1311.2534 DOI
N. Ofek et al., “Demonstrating Quantum Error Correction that Extends the Lifetime of Quantum Information”, (2016) arXiv:1602.04768
S. Rosenblum et al., “Fault-tolerant detection of a quantum error”, Science 361, 266 (2018) arXiv:1803.00102 DOI
A. L. Grimsmo, J. Combes, and B. Q. Baragiola, “Quantum Computing with Rotation-Symmetric Bosonic Codes”, Physical Review X 10, (2020) arXiv:1901.08071 DOI
M. H. Michael et al., “New Class of Quantum Error-Correcting Codes for a Bosonic Mode”, Physical Review X 6, (2016) arXiv:1602.00008 DOI
Page edit log

Your contribution is welcome!

on (edit & pull request)

edit on this site

Zoo Code ID: cat

Cite as:
“Cat code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022.
@incollection{eczoo_cat, title={Cat code}, booktitle={The Error Correction Zoo}, year={2022}, editor={Albert, Victor V. and Faist, Philippe}, url={} }
Share via:
Twitter | Mastodon |  | E-mail
Permanent link:

Cite as:

“Cat code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022.