Concatenated quantum code[1] 

Description

A combination of two quantum codes, an inner code \(C\) and an outer code \(C^\prime\), where the physical subspace used for the inner code consists of the logical subspace of the outer code. In other words, first one encodes in the inner code \(C^\prime\), and then one encodes each of the physical registers of \(C^\prime\) in an outer code \(C\). An inner \(C = ((n_1,K,d_1))_{q_1}\) and outer \(C^\prime = ((n_2,q_1,d_2))_{q_2}\) block quantum code yield an \(((n_1 n_2, K, d \geq d_1d_2))_{q_2}\) concatenated block quantum code [2].

Concatenating an \(((n,q,d))_q\) block quantum code can be done recursively, with the \(r\)th level of concatenation yielding an \(((n^r,q,d^r))_q\) code.

Other ways to combine quantum codes include pasting [3], and generalizations of concatenation exist [4,5].

Encoding

Standard encoding proceeds by first encoding the inner code and then encoding each physical register into the outer code.

Decoding

Standard decoding proceeds by first decoding the outer code and then using the resulting data to decode the inner code.

Notes

See the book [2] for an introduction.

Parent

  • Tensor-network code — Encoders for a concatenated codes correspond to tree tensor networks.

Children

  • Group-based QPC — A group-based QPC is a concatenation of a phase-flip group-based repetition code with a bit-flip group-based repetition code.
  • Concatenated bosonic code — A concatenated bosonic code is a bosonic code that can be thought of as a concatenation of a possibly non-bosonic outer code and another bosonic inner code.
  • Concatenated qubit code

Cousins

References

[1]
E. Knill and R. Laflamme, “Concatenated Quantum Codes”, (1996) arXiv:quant-ph/9608012
[2]
D. Gottesman. Surviving as a quantum computer in a classical world (2024) URL
[3]
D. Gottesman, “Pasting Quantum Codes”, (1996) arXiv:quant-ph/9607027
[4]
M. Grassl et al., “Generalized concatenated quantum codes”, Physical Review A 79, (2009) arXiv:0901.1319 DOI
[5]
Z. Wang et al., “Nested Quantum Error Correction Codes”, (2009) arXiv:0909.5103
[6]
M. Grassl, P. W. Shor, and B. Zeng, “Generalized concatenation for quantum codes”, 2009 IEEE International Symposium on Information Theory (2009) arXiv:0905.0428 DOI
[7]
Y. Xu, Y. Wang, and V. V. Albert, “Clifford operations and homological codes for rotors and oscillators”, (2024) arXiv:2311.07679
[8]
S. Beigi et al., “Graph concatenation for quantum codes”, Journal of Mathematical Physics 52, 022201 (2011) arXiv:0910.4129 DOI
[9]
J. Fan et al., “Entanglement-assisted concatenated quantum codes”, Proceedings of the National Academy of Sciences 119, (2022) arXiv:2202.08084 DOI
[10]
T. Sidana and N. Kashyap, “Entanglement-Assisted Quantum Error-Correcting Codes over Local Frobenius Rings”, (2023) arXiv:2202.00248
[11]
Y. Ouyang, “Concatenated Quantum Codes Can Attain the Quantum Gilbert–Varshamov Bound”, IEEE Transactions on Information Theory 60, 3117 (2014) arXiv:1004.1127 DOI
[12]
Z. Li, L.-J. Xing, and X.-M. Wang, “A family of asymptotically good quantum codes based on code concatenation”, (2008) arXiv:0901.0042
Page edit log

Your contribution is welcome!

on github.com (edit & pull request)— see instructions

edit on this site

Zoo Code ID: quantum_concatenated

Cite as:
“Concatenated quantum code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/quantum_concatenated
BibTeX:
@incollection{eczoo_quantum_concatenated, title={Concatenated quantum code}, booktitle={The Error Correction Zoo}, year={2022}, editor={Albert, Victor V. and Faist, Philippe}, url={https://errorcorrectionzoo.org/c/quantum_concatenated} }
Share via:
Twitter | Mastodon |  | E-mail
Permanent link:
https://errorcorrectionzoo.org/c/quantum_concatenated

Cite as:

“Concatenated quantum code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/quantum_concatenated

Github: https://github.com/errorcorrectionzoo/eczoo_data/edit/main/codes/quantum/properties/quantum_concatenated.yml.