Concatenated quantum code[1] 

Description

A combination of two quantum codes, an inner code \(C\) and an outer code \(C^\prime\), where the physical subspace used for the inner code consists of the logical subspace of the outer code. In other words, first one encodes in the inner code \(C^\prime\), and then one encodes each of the physical registers of \(C^\prime\) in an outer code \(C\). An inner \(C = ((n_1,K,d_1))_{q_1}\) and outer \(C^\prime = ((n_2,q_1,d_2))_{q_2}\) block quantum code yield an \(((n_1 n_2, K, d \geq d_1d_2))_{q_2}\) concatenated block quantum code [2].

Concatenating an \(((n,q,d))_q\) block quantum code can be done recursively, with the \(r\)th level of concatenation yielding an \(((n^r,q,d^r))_q\) code.

A generalization of concatenation exists [3].

Encoding

Standard encoding proceeds by first encoding the inner code and then encoding each physical register into the outer code.

Decoding

Standard decoding proceeds by first decoding the outer code and then using the resulting data to decode the inner code.

Notes

See the book [2] for an introduction.

Parent

  • Quantum Lego code — Encoders for a concatenated codes correspond to tree tensor networks.

Children

  • Group-based QPC — A group-based QPC is a concatenation of a phase-flip group-based repetition code with a bit-flip group-based repetition code.
  • Concatenated bosonic code — A concatenated bosonic code is a bosonic code that can be thought of as a concatenation of a possibly non-bosonic outer code and another bosonic inner code.
  • Concatenated qubit code

Cousins

References

[1]
E. Knill and R. Laflamme, “Concatenated Quantum Codes”, (1996) arXiv:quant-ph/9608012
[2]
D. Gottesman. Surviving as a quantum computer in a classical world (2024) URL
[3]
M. Grassl et al., “Generalized concatenated quantum codes”, Physical Review A 79, (2009) arXiv:0901.1319 DOI
[4]
Y. Xu, Y. Wang, and V. V. Albert, “Clifford operations and homological codes for rotors and oscillators”, (2024) arXiv:2311.07679
[5]
J. Fan et al., “Entanglement-assisted concatenated quantum codes”, Proceedings of the National Academy of Sciences 119, (2022) arXiv:2202.08084 DOI
[6]
T. Sidana and N. Kashyap, “Entanglement-Assisted Quantum Error-Correcting Codes over Local Frobenius Rings”, (2023) arXiv:2202.00248
[7]
Y. Ouyang, “Concatenated Quantum Codes Can Attain the Quantum Gilbert–Varshamov Bound”, IEEE Transactions on Information Theory 60, 3117 (2014) arXiv:1004.1127 DOI
Page edit log

Your contribution is welcome!

on github.com (edit & pull request)— see instructions

edit on this site

Zoo Code ID: quantum_concatenated

Cite as:
“Concatenated quantum code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/quantum_concatenated
BibTeX:
@incollection{eczoo_quantum_concatenated, title={Concatenated quantum code}, booktitle={The Error Correction Zoo}, year={2022}, editor={Albert, Victor V. and Faist, Philippe}, url={https://errorcorrectionzoo.org/c/quantum_concatenated} }
Share via:
Twitter | Mastodon |  | E-mail
Permanent link:
https://errorcorrectionzoo.org/c/quantum_concatenated

Cite as:

“Concatenated quantum code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/quantum_concatenated

Github: https://github.com/errorcorrectionzoo/eczoo_data/edit/main/codes/quantum/properties/quantum_concatenated.yml.